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FEM based determination of real and complex
elastic, dielectric and piezoelectric moduli in
piezoceramic materials

Tom Lahmer, Manfred Kaltenbachélember, IEEE Barbara Kaltenbacher, Reinhard Lerdthember, IEEEand
Erich Leder

Abstract— We propose an enhanced iterative scheme for the determination is not sufficient. The FE method for the piezo-
precise reconstruction of piezoelectric material paramegrs from  electric partial differential equations are briefly debed in
electric impedance and mechanical displacement measuremts. Sec. Ill, followed by Sec. IV and V presenting our inversion

It is based on finite element simulations of the full three- h dth itivit vsis. Th tai
dimensional piezoelectric equations, combined with an inect scheme an e sensitivity analysis. The computationaiasp

Newton-iterative or nonlinear Landweber iterative inversion are discussed in Sec. VI. In Sec. VII we provide a detailed
scheme. We apply our scheme to two piezoelectric materialmd ~ discussion of the results, when applying our inverse scheme
test its performance. For the first material the manufacture  to both piezoelectric material.

provides a full data set, whereas for the second one, no maiaf

data set is available. For both cases, our inverse scheme,ing

electric impedance measurements as input data, performs We Il. NECESSITY OFPARAMETER ADAPTION FORFEM
Index Terms— Piezoelectricity, material parameter determina- ~ The main difference between mathematical models which
tion, inverse problem, finite element method are involved in the determination of material tensors using

well-known resonance methods and real world simulations is
the difference in the assumed space dimension. Thus, a dis-
. INTRODUCTION crepancy in the exactness of the material parameters isires
For the optimal design of piezoelectric devices, efficiel@’ the following reasons. Published data sets are always a
numerical simulation tools have been developed, that avdiglléction of parameters determined from a set of mono-hoda
expensive and time-consuming experiments by numericafigMples operating at different frequency ranges. However,
solving the mathematical formulation of the underlying phy due to frequency dependency, the parameter sets are never
ical model, i.e., the system of partial differential equai Precise enough for three dimensional numerical computatio
with appropriate boundary conditions. Among all method} addition, most experimental based determinations cfcie
the Finite Element (FE) method has become the stand&HgCtric material parameters extract the data in #fed, e™)
numerical calculation scheme for the computer simulatidfM- For a standard FE implementation, thé (e, £%) form
of technical systems (see, e.g., [1], [2]) and in special fé} required (see Sec. ll). Each conversion of the data sets
piezoelectric systems (cf., e.g. [3]). The accuracy of gheform the 67, d,cT) to the €7, e,=%) form distributes error
methods, however, relies heavily on the material parametéPmponents from single parameters to others, so that the
steering the interaction of mechanical and electrical Gitias. €xactness of the parameters decreases. Our proposedeinvers
So far, these parameters have been estimated by experim&hf¢me allows for an adjustment of given data sets to me#isure
on test samples, whose special shape allows simplificaiions8l€ctric impedances and determines directly the paramgter
the model. Hence, explicit formulas for parameter exteacti the €”,e,e®) form . Even though, we can not proof, that
from resonance frequencies exist (cf., e.g., for loss+esgels Our scheme identifies the physical parameters, we obtain for
[4],[5] and [6], [7], [8], [9], [10] considering losses.).dw- @ Selected frequency range a complete and consistent data se
ever, the results of these estimation formulas do not peovihich serves for further precise numerical computatiorie T
sufficiently precise information on the material coeffiteen Proposed method will even be suited for the case, when no
giving rise to inaccurate results in computational siriaks, Manufacturers data are present, as long as one can provide
Therefore, it was our aim to propose and implement a cofPPropriate initial guesses.
putational scheme that enables the determination of thdewho
material parameter set being appropriate for FE simulation I1l. PHYSICAL EQUATIONS AND FINITE ELEMENT
The paper is organized as follows. In Sec. Il, we discuss DISCRETIZATION

the necessity of material parameters appropriate for FE-sim The material law describing the piezoelectric effect in the

lations and why a pure experimental based material paramef€earized case of small mechanical deformations and rigect

. . , fields, reads as
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relating the mechanical stress tendet) and the electrical Combining (1), (2), (6) and (7), we arrive at a system of four
displacemenD, respectively, to the mechanical strain tensqgrartial differential equations fat and¢, inside a piezoelectric
[S] and the electric fieldE. Due to the symmetry of the body
mechanical tensorier] andS], we may rewrite them in Voigt 92
notation as follows pa_t?

— T
¢ = (90a0yy0::05:00:00y) ®) —V - ([e]Bu—[%]Vg) = 0 inQ. (9)

T
S = (SzaSyySzzSy:SzzSzy) - 4)

— B ([c"]Bu+[e]"Vg) = 0 inQ (8)

_ . Considering the experimental setting of vanishing normal
For the electrostatic case, we may expresas the gradient gyeqq at the boundary, and two electrodes being applied at

of an electric potentiap opposite positionsl’, and T'., one of them loaded by a
E=-Vé prescribed electric potentiat®, we arrive at the boundary
’ conditions
andS in terms of the mechanical displacements o — 0 on 90
S = Bu. ¢ = 0 onT,
o = ¢° onT. (10)
The first order differential operatd# computes as Dn = 0 on 9N\ (I, UT,) .
a% g 0 Therewith, the variational formulation for the case of a-har
0 5 O monic excitation reads as
s_| 0 0 %
n 6% 20 / < —pw?a’v  +  (BW)'[cE)(Bv)
0 5 7 o
2 9 i N
0z o + (Vo) le](Bv) ) dQ=0 (11)
i.e., the transposed of the divergence DIV of a dyadic. The
material tensorsic®), [¢), and [e], appearing in (1). (2) [ ( (Vo) el(B8) — (VO)(VY) ) a0
are the elasticity coefficients, the dielectric constaiatsg J
the piezoelectric coupling coefficients, respectivelycéaing - 0 (12)

to the crystal structure and polarization of the piezoeilect

material, these matrices show a certain symmetry and $pargjith « the angular frequency and, ¢ appropriate test
pattern (cf. [4]). For the 6mm crystal class we have, e.g. functions.

The application of a finite element discretization scheme

ci1 cz2 cas 0 0 0 ) ) i .
to these equations ends up with a linear system of equations,

¢z e oz 00 0 which can be summarized as [11]
[cP] = c13 €13 C33 0 0 - K K .
0 0 0 cy O 0 <_w uu + Ruu u¢><%)_(0>. (13)
Koo —Kgo ¢ 0
0 0 0 0 Cq4 0 -
0 0 0 0 0 (c11—-c12)/2 Herein K,,,, and M,, denote the mechanical stiffness,
and mass matrix, respectivelif,, and K,, the dielectric
0 0 0 0 e35 0 stiffness- and the piezoelectric coupling matrixthe nodal
vector of displacement ang the nodal vector of scalar
le] = 0 0 0 as 00 () electric potenr'zial. We Want@to note, the we allow for our
est ez ez 0 0 0 material tensors to have complex entries, in order to mduel t
damping behavior, namely mechanical relaxation, imperfec
en 00 piezoelectric energy conversion and dielectric dissqra(see,
€] = 0 e1 O . e.g. [12]), of piezoelectric materials.
0 0 £33

The mechanical behavior of piezoelectric materials is de- V- PARAMETER IDENTIFICATION ALGORITHM

scribed by Newton’s law The main task we are concerned with is to adapt all
. 92u occurring material parameters in the piezoelectric equati
DVeo =B"o =Pz (6) in such a way, that simulated results coincide with those

) . ) ) received from measurements, namely the electric impedance
wherep denotes the density. Since these materials are insulgf-, apstract setting this can be formulated with the sedall
ing, i.e., d_o not contain free volume charges, the electeid fi parameter-to-solution map
is determined by

V.D=0. @) FCroer — e, F(p) =y (14)
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mapping from the set ohp., complex valued parameters 1=1+1;

_ (.E .E .E _.E _E S .S k+1,6 _ k5 k.6,
P = (CI),Clh s Cl5 s Cs 5 Caq 5 €15 , €31 5 €33 ,ET1 ,E53) OF SUb- pFtho =pho 4 0s;%;
sets of it to the set of measuremgtsaken atnp.q different k=k+1;

frequencies. (To stress that the computations are pertbrme. o the mapping stands representatively for a linear itera-
in frequency domain all expressions are marked-byThe e regularizing method, e.g. Landweber, or the conjugate
measurements may either contain mgasgred impedances, Otient method (see again [16], [14], [13]) are possible
mechanical displacements or a combination of them at djipgiceg Mainly, our choice for these iterative methodsbas

ferent frequencies;, i =1,.... 7 freq. on the fact, that the regularization parameter, here thebenm

_From the FE solution of the piezoelectric PDEs we obtayy jieration steps, can easily be determined a posteriori by
directly the mechanical displacemeintand electric potential the discrepancy principle in (*). The steering parameéter

¢ at all FE nodes and by a post-processing step the elecy;;cc < 7 < 1 influences the trade of between convergence

impedanceZ (w:) and stability of the inner method. For optimal choicesnpf
el v T Too St A/ see [17]. Applying additionally linesearch strategiestey
¢“(wi) = /F n (_[e]B U(wi) + e ]V‘b(wl)) dle the parameted > 0 improves convergence and prevents
. ¢ . divergence. The initial guegs’ of unknown materials will be
Z(wi) = G (@)’ =1, ..., Nreqs (15) accomplished using the methods prescribed in the standards

4], [5] or taking over parameters from well known materials
where ¢°(w;) denotes the computed surface charges on tigh similar physical properties.

loaded electrode.

Eventhough, solving (13) is a linear problem, the operator
is strongly nonlinear. Furtheron, it is not guaranteed #zath ~ 2) Modified Landweber Iteration‘Alternatively one can
parameter will depend in a stable manner on the measureméfglement a nonlinear iterative regularizing method, veher
and additionally the right-hand side in (14) is contamidatdhe most simple one is nonlinear Landweber’s iteration.eHer
with data noise, which makes (14) a typical ill-posed proble during the fixed-point iterations an adjoint problem applie
Its solution requires appropriate regularization methdasn the residual will be solved, see e.g. [16] or [18]
which we have investigated a regularizing Newton method andk+1 5 L5 5t ks A ks
a regularizing modified Landweber iteration. Both methodB™ " ° =P + w " F (p™°)*(y° — F(p™°)), k=1,...
are minimizing the norm of the residuglF (p) — y|| until a ) ) (16)
lower bound of~§ with = > 1 is reached. Here, the variable With [[w*°F/(p*?)|| < 1||. The operator’(p*°)* =
denotes a measure of the quality of the measurements, befngp"°)”" (complex conjugate) denotes the adjoint of
more precisd|y — ¥°|| < § wherey denotes exact data for’ (P*). The special choices ab*, e.g.
this model angy’ contains a certain noise level resulting from . R .
inexactness in the measurements. Doing so the early s@ppin ko ._ __ ||7:'(P’f’6)*(y5 = f(Pk:‘;))||2 (17)
of the iterations avoids amplification of the noise compdsen [[F'(pk2)F' (pF0)*(3° — F(p*9))|[?
in the computed data. In both methods, we need to compute

the Jacobigrﬂ:". Forming for a parameter incremeitp the or .
differenceF(p + dp) — F(p), one obtainsF(p)'[dp] = dy, Wk |ly° — F(p*?)]|? (18)
where in discrete formly = (di,d¢) and du and d¢ are L ||F (pR0)* (30 — F(pF9))]|?

solutions of the following system
transforms the Landweber iteration into a steepest descent

( K;“ Kug ) ( d—Qf > = ( dK;“ Ky ) ( > or minimal error method which remarkably speed up the

Ko —Kos d¢ dKyuy —dKgo ¢ convergence compared to the classical Landweber iteration

Here, the matrix on the RHS is obtained by substituting the

parameterg by dp in the bilinear forms of (11) and applying A crucial point for the successful identification is an

the FE assembly. appropriate scaling of both parameters and measurements.
1) Inexact Newton Iterationin algorithmical design, the Thus, within the identification methods the parameters are

application of the inexact Newton iteration (see, e.g.],[13equilibrated, i.ep = £ * p where¢ ~ diag(1/p1,...1/pn,..)-

> |

[14], [15]) results in the following algorithm. To compare the measured and computed electric impedances,
denoted byy? and.F;(p), at different frequencies, we evaluate
CHOOSEp?; the following logarithmic norm
SETk=0; N
WHILE [y — 7(p")]| = oz -~ [log(§?) — log(Fi(p))I*)
SETi = 0; Iy = F@)lho = 3 [ log(37) ]2 '
SET s’ = 0; =1 i
N : 2 k,§ ) . _ _
WHILE |[[y° —f(fk’é)ff(l)k’é)[si Il Therewith, we consider the different orders of magnitudes
= milly° = F(P")I| *) between impedance measurements at various frequencies.

s = (F (), 37— FM),s);
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TABLE |

VI. COMPUTATIONAL ASPECTS
COMPUTED CONFIDENCE INTERVALS OF DIFFERENT MODE SHAPES

Concerning the forward problem, the piezoelectric sam-

E E E E

11 €33 €12 €13 C44 i i i i i
Radial T N R B ge705 ples operating at.rad|al, thlcknes_s and longitudinal mode a
Thickness | 1.8 21  1.1e+06 1.7 1.6e+05 modeled as rotationally symmetric problems. The othess, th
#Ongltudmall fllég 2-37 géSS ?-?86 ;gﬁeggﬁ thin plates vibrating in transversal and shear modes need

ransversal . . . . .3etH H H H
Shear 0014 006 0027 0.033 0016 full three dimensional meshes. ApprOX|mate_Iy 250 2nd_ order
3 3 guadrilateral elements are used for the rotationally sytrime
€15 €31 €33 €11 €33
Radial 300106  3.82 177 547er7 184 and 320 2nd order hexahedron elements for the 3D case. The

Thicknedss | 2.8e+t05  2.6e+03 3.3  3.9e+t05 2.0 sparse direct solver PARDISO, an efficient software for solv
Longitudinal | 9.09e+06 12.03 3.7 9.48e+07 6.03 ; ; FE

Transversal | 1.61e+06 1.19e+03 29.0 1.34e+07 16.1 'ng Iar_ge sp_arse symmetric and unsymmefmc linear SyStéms 0
Shear 0.68 735 11.7 333 1.28 equations, is employed to solve the arising algebraic syste

of equations [20]. Solving the inverse problem, namely the

0.035

V. SENSITIVITY ANALYSIS

Since not all material parameters show a visible impact on 003 ]
the solution of the piezoelectric PDEs, we like to undermtan
which of them dominate in the different types of probes.
These are differing in e.g. geometry, polarization and eang
of excitation frequency. In the following we interprete the
linearization 7’ of the highly nonlinear relation between
parameters and observatioﬁ‘$p) = y. Confidence intervals 0oL
of the identified parameters can be estimated by evaluating
diagonal entries of the inverse of the information matrix

0.025

0.015

Residual || y = F(p)||

0.005

Nfreq

A~ A~ -1 ‘ ‘ uml ersa iterat |gn steps
C = Z (}"’(p,wi)H}"’(p,wi)) € CMpar XMpar (19) Number of iteration step:
—
Z__ . ) ) Fig. 1. Development of residual of the methods proposednduthe
The sensitivity of each parameter is related to a diagoray enparameter identification at the longitudinal mode, Pz36

in this matrix C and one can say that the probability that

exact _ _computed 2 o inexact Newton (e.g. with the - methods as inner method)
P = pi < V CitXpipae (1 = @); 1 =1, 00 Mpar or modified Landweber methods comes with a price since here
(20)  the forward problem needs to be solved repeatedly. Figure 1
is larger than(l — a), where x7 (1 — a) denotes the compares the two different methods fitting the longitudinal
(1 — ) quantile of thex;  probability distribution. Thus, mode of Pz36, and displays the decrease of the residuals (for
the smaller the term on the RHS in (20), the more reliabife fitting results, see Fig. 8). Here, all real and imaginary
the identified parameter and the higher its influence on tharts of the parameters are determined simultaneousiy Bot
transducers behavior can be considered. Table | contajyer upmethods are run until the norm of the residuay & F(p)||)
bounds of the sizes of the confidence intervals using= falls below5.0 x 10~%. The computing times are 17.5 minutes
0.01 for transducers working in radial, thickness, longitudiinafor the Newtons-methods (8 steps) and around 22.4 minutes
transversal and thickness shear mode. for the modified Landweber’s iteration (10 steps) on a 64 bit
Setting a threshold of approximately, the set of parame- Intel(R) Pentium(R) D CPU 2.80GHz machine. In case, that
ters of each mode disintegrates into two subsets of parasnetenhe initial guess is not as suitable as in this case, it issadié
Parameters, whose confidence interval are sufficientlylsmab start the inverse calculation with less input, i.e. a diew
are reliable, the others are far away from identifiabilitythe number of measurements until one reaches a certain accuracy
latter case results from identifications of other modes hav@en, we restart the program evaluating an increasing numbe

to be called on. Due to the dependency of the computgflimpedance measurements and improve the exactness of the
confidence intervals on the location and number of selectgeskylts.

frequencies their values can only be compared qualitgivel
but not quantitatively. An appropriate choice of measungme
locations providing the highest amount of information foe t
identification process can be achieved by means of optimalln this section we will present results of our proposed
experiment design and is discussed in [19]. method applied to two different piezoelectric materials.t@e

A Remark concerning the shear mode: In the frequency rangage hand, we have chosen a well known material, where the
where we see the first mode of the shear vibration, higheanufacturer provides a complete set of material paraseter
modes of the thickness vibration are present (see Figure §)z26, Ferroperm) and on the other hand a recently developed
Performing measurements at such a frequency interval sllomaterial (Pz36, Ferroperm), for which until now, no materia
to identify even parameters, dominating in thickness modedata are available. For the first material, Pz26, we use the

VII. | DENTIFICATION RESULTS
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manufacturer’s data as starting values for our developed in 10° Radial Mode
verse scheme and determine real and complex valued material
parameters appropriate for precise FE simulations. For the
second material, we show how one can obtain a consistent &
parameter set, even if one starts more or less from the bcratc
8
A. Pz-26 =
The manufacturer's data for this material, which is a hard 3
PZT with low ageing rates and low loss [21], are given in E —— Measurement
Table II. For our investigations, we used the three pieztiete -~ Fitting
Manufacturer data
TABLE I 10° ‘ ‘ ‘
120 140 160 180
PUBLISHED MATERIAL PARAMETERS OFPZ26, FERROPERM Frequency  (kHz)
cE | E3 | cE | E CE ) ] ] ]
T 68e+11| T23e+Il] L. 10e+11| 9. 999+105J 3 01e+10 Fig. 2. Radial mode: measured and simulated impedance s;uPz26
ei5 | es1 | ess | &P
9.86 | -2.80 | 14.7 | 733e09| 6.26:00
where a(w) = apw and B(w) = By/w. The values in Tab.
samples as listed in Tab.lll. TABLE V
TABLE Ill IMAGINARY PARTS, INITIAL GUESS AND IDENTIFIED PARAMETERS,
GEOMETRY OF THE USEDPZ26 SAMPLES RADIAL MODE, Pz26
Name | Geometry B B | B B b
Disc 1 | radius= 8 mm, thickness= 1 mm 1.68e+9 1.23e+9 1.10e+9 9.99e+8 3.01e+8
Disc 2 | radius= 8 mm, thickness= 4 mm 7.07e+07| 4.48e+08| 5.33e+07| 1.85e+08| 1.13e+08
Bar length = 20 mm, width = 5 mm, height= 1 mm ers | es | ess

1> €3
0.098 | -0.028 | 0.14 ‘ 7.31el-11‘ 6.26.11
0.1001 | -0.0286 | 0.135 | 7.34-11 | 6.52e-11
1) Radial Mode: We start our investigation with disc 1,

which operates at its radial mode. We use the manufacturer’s
data as starting parameters and apply our inverse schemé ifeveal that in particular for the mechanical parts theiahit
order to fit the simulated impedance curve to the measuré@mping was too strong. Figure 3 shows the measured and
one. Figure 2 displays the three curves, namely the measugétiulated phase of the electric impedance. Again, using the
impedance and the two simulated impedances computed with
the manufacturer's as well as fitted material parameters. As ‘
can be seen, the material parameters obtained by our inverse ol -~ fung
scheme provides improvements concerning the locationeof th Inial guess
resonance frequency and appropriate damping. Resultseof th |
identification concerning the real valued parameters atedi
in Table IV. For the initial guesses of the imaginary partha t

100

TABLE IV
RESULTS OF FITTING AT RADIAL MODE, REAL PARTS, Pz26

Phase arg(Z) (Q)

B B | B | ch c?, .
1. 626+11 | 1. 268+11 | 1. 10e+11 | 9. 828+10iv 3. 008+10 ol
e1s | es1 | ess | ef)
9.86 | -2.82 | 14.26 | 7. 33e 09 | 6. 329 09 1097 12 13 12 15 16 17 18

Frequency w (Hz) X 10°

complex valued material parameters, we have assumed a valige3. Phase of the electric impedance at radial mode, Pz26

being approximately one per mill from its real part. This t&n

motivated considering the usual Rayleigh damping as a apeditted material parameters, we achieve a good approximation
case of complex valued parameters (see, e.g., [22], [1fL]).of the measured impedance curve.

one has found appropriate values for the Rayleigh damping

coefficientsa(w) and 5(w), complex valued parameters can 2) Combined Radial and Thickness Modef great interest

be computed via for a simulation based material parameter identificatiom ar
€E] = 1+jBo; g 6] = 1 fe] such geometries, where different modes occur in a simiéar fr
¢ 1 —jao ¢ =Tz jag € guency range and allow to adapt for a larger set of parameters

—_— 1 This is exemplarily done with disc 2, where the radial mode
[e] = 1— jao [e] is at 140 kHz and the thickness mode &t0kHz. Now, we
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use in our inverse scheme already the data set obtained by our Shear‘ Mode

first fitting procedure. The results can be seen in Fig. 4, eher \
we again display the measured and simulated (once with the 10
manufacturer's and once with the fitted material paramgters g
impedance curves. Since the impedance curve shows quite = ,
o 10
]
. Planar and Thickness Mode %
10 ‘ ‘ : ‘ : 8
—— Measurement g :
Manufacturer E 10 — Measurement
8 - - ~Fitting Manufacturer
= ' -~ Fittin
N 10* ', 1072 ‘ ‘ e
) 0
o ! 0.8 1 1.2 1.4 1.6
% Frequency w (MHz) % 10°
[e8
= 102l Fig. 5. Fitting of shear mode, Pz26
‘ ‘ ‘ ‘ ‘ TABLE VI
100 200 300 400 500 600 FITTING AT SHEAR MODE, REAL AND IMAGINARY MATERIAL
Frequency w (kHz)
PARAMETERS, Pz26
Fig. 4. Simultaneous fitting of radial and thickness mode6Pz Real parts

E E E E

] ] ) 11 C33 | C12 | €13 | Cay
a lot of piezoelectric coupling modes, we can not expect to ~ 1.31e+11[ T.1le+I1] 1.06e+11[ 9.18e+I0]| 2.12e+10

obtain a fitting as in the previous case. Table VI lists the rea

0|

. ) ) ) ) ei5 | esn | ess | ef} | €5
and imaginary material parameters as obtained by the iavers 8.18 | 2.38 | 14.05 | 7.19¢-09| 6.41e-09
scheme.
Imaginary parts
TABLE VI e i3 cf i ciy
RESULTS OF SIMULTANEOUS FITTING AT THICKNESS AND RADIAL MODE 1.03e+09 | 8.15e+08| 1.06e+09| 9.81e+08| 2.4e+08
REAL AND IMAGINARY PARTS, Pz26 s s
€15 €31 €33 €11 €33
0.102 -0.028 0.13 7.33e-11 | 6.48e-11
Real parts
1.682e+11| 1.25e+11| 9.84e+10| 9.47e+10| 2.92e+10
e1s a1 ess es, 5, VIIl. Pz-36
10.33 2.84 14.62 7.18-09 | 6.28e-09
imaninary barts For our second practical application, we have chosen Pz36,
cE cE 9 CE2y P oE cE, which is a new type of piezoceramic material with very low
11 33 1 13 .. .
6.24e+07 | 2.50e+08| 5.33e+07| 1.33e+08| 2.27+07 acoustic impedance [21]. Until now, no manufacturer da¢a ar
s s published. The samples listed in Tab. IX have been used for
ers | ey |ess | e | ey

our investigations. To obtain starting material paransefer
our inverse scheme, we have measured the electric impeslance
and have extracted the parameters according to the IEEE

3) Thickness Shear Mod&he largest discrepancy betweerstandard [4]. Since the used samples_ do not fquiII_ the IEEE
manufacturer's data and measurements are noticeabledor Yfindard, we can not expect to obtain good starting values.
shear mode. Figure 5 compares the measured and simuldi@@ever, this is not our intention, since we also want to
impedance curves, and in Tab. VIl we list the real andemonstrate, that(_)ur developed inverse scheme pgrforrhs we
imaginary parts of the fitted material parameters. even for sgch starting parameters. The values of this puveed

are listed in Tab. X.

As described in Sec. V, we have quite different confidence
intervals for the different piezoelectric modes. Provigdia
consistent data set, we choose the material parameterd out o

0.09966 | -0.0287 | 0.13 | 1.25e-10| 2.1e-10

our fitting results according to the confidence intervaldl&a TABLE VIII
VIII provides this consistent data set for our first piezeele consisTENT DATA SET FORPZ26 FROM FEM BASED FITTING, REAL
tric material under investigation. Since damping is a yeall PARTS

frequency depended phenomena, no consistent data set will

. . . . E E E E
be provided here. Using now this set of material parameters C11 ch | b | i
. . : . 131e+11| 1.25e+11| L1.1e+11| 9.7e+10| 2.12e+10
and performing FE simulations of the electric impedance of ers | es | ess | e | e

- . 11 33
our three samples, results still in the good comparison ¢o th 8.18'| -2.82 | 1426 | 7.19e-09| 6.33e-09
measured ones.
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TABLE IX

XI). As can be seen from Fig. 7, this mode is disturbed by a
GEOMETRY OF THE USEDPZ36 SAMPLES

lot of smaller ones, which is mainly due to the geometry of

Name | Geometry the sample. However, our inverse scheme still achieves d goo
Disc radius= 8 mm, thickness= 1 mm result. The material parameters, as obtained by our scheme,
Cylinder | radius= 2.5 mm, length= 18 mm

Bar length = 25 mm, width = 4 mm, height= 1 mm

TABLE X
MATERIAL PARAMETERS OFPZ36,AS EXTRACTED FROM IMPEDANCE
MEASUREMENTS ACCORDING TOIEEE STANDARD

E E E E E
e | < | b Ci3 Caq
449e+10| 3.46e+10| 7.21e+11] 7.29e+10] 1.32e+10

s

€15 | €31 | €33 8% | €33
2.56| -0.41| 6.57| 4.16e-09| 5.59¢e-09

A. Radial Mode oy
We start our procedure with our piezoelectric disc (see Tab.

IX) and investigate in the radial mode. Figure 6 displays tHdg. 7. Fitting at thickness mode, Pz36

measured and computed electric impedances. Due to the clear ]
are listed in Tab. XII.

10° ‘ ‘ ‘ ‘ ‘ : : TABLE Xl
Measurement |
RESULTSTHICKNESSMODE, Pz36
Real parts
il ch < cfhy <
6.02e+10| 3.45e+10 | 1.02e+10| 1.51e+10 1.12e+10
eis €31 €33 8% 55?3
2.55 -0.0409 6.54 4.65e-09 3.69e-09,
Imaginary parts
cf) ch cf) cfhy <
o ‘ ‘ ‘ ‘ ‘ 7.24e+08| 1.82e+08 | 1.03e+08| 1.49e+08 1.13e+08
0.9 0.95 1 1.05 11 115 12 125 13
x10°
eis €31 €33 8% 55?3
. . . 0.025 -0.000409| 0.0407 | 4.665e-11| 5.35293e-11,
Fig. 6. Fitting at radial mode, Pz36

radial mode of this sample, we achieve an optimal fitting. The

obtained material parameters are shown in Tab. XI.

C. Longitudinal Mode
TABLE XI

RESULTSRADIAL MODE, REAL AND IMAGINARY PARTS, Pz36 To perform the fitting for the longitudinal mode, we use

the cylindrical sample as listed in Tab. IX. Figure 8 shows

Real parts
ey cly ) cly ch
5.59e+10| 3.41e+10| 1.029e+10| 1.53e+10| 1.13e+10 o i )
R
els es1 es3 8131 8:‘3‘3 Initial guess
2.56 -0.0409 6.96 4.659e-09| 3.743e-09 3
Imaginary parts
e cly Cio cly ch
3.15e+08 | 3.03e+08| 9.26e+07 | 2.15e+08 | 1.13e+08
els es1 es3 ef) €5 .
0.0256 | -0.00041 0.067 4.66e-11 | 3.815e-11 0
10°

B. Thickness Mode

The second fitting is performed on the same piezoelecttle electric impedances, and Tab. Xl displays the obthine

Fig. 8.

disc by investigating into the thickness mode and using asaterial parameters.
starting values the one obtained by the radial mode (see Tab.

x10°

Fitting at longitudinal mode, Pz36
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TABLE XIlI
RESULTSLONGITUDINAL MODE, Pz36
Real values
cf cdy cfh cfy iy
5.68e+10| 3.77e+10| 1.03e+10| 1.45e+10| 1.13e+10
eis e31 es3 e 5,
2.56 -0.041 6.42 4.65e-09 | 4.58e-09
Imaginary values
cf cds cfh cfy iy
5.62e+08| 3.52e+08| 1.03e+08| 1.48e+08| 1.13e+08
eis es1 es3 ey e
0.0256 -0.00041 0.055 4.66e-11| 5.02e-11

D. Shear Mode

the improvement in the data set, we apply the identified
material parameters to a sample, which has not been con-
sidered so far, namely a radial disc working in thickness
mode with a thickness oftmm and diameter ofl6 mm.

Figure 10 shows the simulated impedance curve which gives
a reasonable approximation to the measured one. Still, and

Thickness mode, 16mm x 4mm

Impedance [Z] (Q)

—— Measurement

The last sample used for determining the material parame-
ters for Pz36, is operating at its shear mode. Figure 9 displa

Initial guess

- - = FEM based fit from other samples|

electric impedances as obtained from the measurement and 20 3 s sz 53 a4 s 35 7
simulations. The fitted material parameters computed by our
Fig. 10. Computed impedance of a not identified specimengusie

Measurement {
— — — Fitting
Initial guess

Fig. 9. Fitting at shear mode, Pz36

inverse scheme are listed in Tab. XIV.

TABLE XIV
RESULTSSHEAR MODE, Pz36
Real parts
cf) ci <) cfh i
5.64e+10| 3.48e+10| 1.03e+10| 1.49e+10| 1.13e+10
eis es1 ess et €5y
2.78 -0.041 6.87 4.66e-09 | 3.55e-09
Imaginary parts
cf) cis <) ch i
5.44e+08| 3.47e+08| 1.03e+08| 1.50e+08| 4.04e+07
eis es1 ess et e5y
0.023 -0.00041 0.068 4.66e-11 | 3.92e-11

E. Thickness Mode, verification of identification results

identified parameters compared to the simulation with thigainguess and
measurement

TABLE XV
CONSISTENT DATA SET FORPZ36 FROM FEM BASED FITTING, REAL
PARTS
e | i e, | cf ciy
5.61e+10| 3.486+10| 1.066+10] 1.56+10| 1.13¢+10
e1s | esn |oess | ef | e
2.56 | -0.041 | 6.88 | 4.666-09| 3.786-09

this is not avoidable, the effects of frequency dependencie
are visible in the results. If one really wants to perform an
exact three dimensional computer simulation one should not
obviate a problem specific parameter adaptation, for which o
developed scheme can easily be applied.

IX. CONCLUSION

The proposed method has turned out to be an indispensable
tool for the generation of suitable material parameterg-ioer
simulations. In addition, it proofs to be an appropriatecgro
dure to determine material parameters with a high accuracy f
newly developed piezoelectric ceramics. Its universalilyws
to consider all ponderable geometries and mode shapestof bot
lossless and lossy materials.

Further work on this subject is devoted to the simulation
based identification of material parameters in piezoatectr
compounds such as the determination of nonlinearitiesen th
material parameters and those induced by the history of the
materials, namely hysteresis.

Applying the proposed simulation based inversion scheme

to a set of differently shaped samples and considering again
those parameters with small confidence intervals provides
rather consistent, except frequency dependency, set nb-pie
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