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Abstract: We present a fast and efficient algorithm for the construction of a SAH-based

BIH on the GPU. Our approach uses a novel asynchronous processing scheme which launches

kernels for the necessary subtasks directly on the GPU. This avoids the communication over-

head between CPU and GPU and optimizes the GPU’s workload. The SAH is employed for

all hierarchy levels which results in very efficient BIHs. Our results show that our algorithm

processes hundreds of thousands primitives at interactive frame rates. This enables interac-

tive ray tracing of dynamic scenes even with changing geometry as is necessary for skeletal

animation or adaptive tessellation.
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1 Introduction

In virtual reality environments, the spatial perception and the degree of immersion depend

on the visual quality of the rendering system. In terms of visual quality, most ray tracing

systems outperform even modern rendering systems [LSB+14] [She12] because they provide

global illumination effects such as reflections, shadows or caustics. In general, interactive

ray tracing systems depend on a spatial data structure to minimize costs for intersection

tests. In most cases, hierarchical acceleration data structures such as kd-trees, bounding

volume hierarchies (BVH) or bounding interval hierarchies (BIH) are employed. However,

the generation of these data structures is a costly task and it is often performed during

preprocessing which prevents using ray tracing for dynamic scenes.

There are various approaches to mitigate this limitation. Multi-level hierarchies based

on grids [KBS11] or a combination of BVH and kd-trees [RDS+10] have been introduced to



deal with moving, but rigid objects. Most recent approaches use modern graphics hardware

to accelerate the generation process. In particular, some subtasks such as sorting can be

performed in parallel on the GPU. However, frequent communication with the GPU is neces-

sary to control the subdivision process. This communication interrupts the kernel execution

and represents a bottleneck in most approaches.

In this paper, we present a GPU-based approach for the efficient generation of a full SAH-

based BIH. Our approach exploits recent graphics hardware developments to eliminate the

communication overhead between CPU and GPU. In particular, one of the latest key features

of Nvidia graphics processors, dynamic parallelism, allows us to spawn new computation

kernels directly on the GPU. Our implementation shows that our approach generates very

efficient BIHs for hundreds of thousands primitives at interactive frame rates.

The main contribution of our approach is a novel multi-level parallel algorithm for gen-

erating a full SAH-based BIH on the GPU. Our asynchronous processing scheme avoids the

communication overhead typically arising in other GPU-based implementations. The result-

ing hierarchies are very efficient for ray tracing because our SAH is used at all hierarchy

levels. Our scheme generates BIHs on-the-fly which allows VR-applications to use ray trac-

ing as rendering method for dynamic scenes, even if the object geometry changes, e.g. for

skeletal animation or adaptive tessellation. This may highly increase visual quality, spatial

perception and the degree of immersion in virtual reality applications.

2 Background

In general, there are a variety of acceleration data structures for ray tracing. Ray clas-

sification schemes [AK87] suffer from their enormous memory requirements and are not

considered in this work. In most cases, spatial data structures such as kd-trees, BVHs

or BIHs are used. However, most algorithms for the on-the-fly generation of these data

structures focus either on the BVH or the kd-tree. For constructing a SAH-based BVH,

Wald [Wal07] shows a fast, yet not interactive approach. Lauterbach et al. [LGS+09] present

a hybrid approach which does not use a full SAH, but results in an almost optimized hierar-

chy. Furthermore, interactive updates (instead of rebuilding from scratch) have been used to

increase performance [WBS07]. For kd-trees, there are also highly parallelized algorithms,

both CPU-based [SSK07] as well as GPU-based approaches by Danilewski et al. [DPS10] and

Zhou et al. [ZHWG08]. The latter both use different node stages to optimize the amount of

parallelism for the corresponding node size.

When constructing an efficient acceleration data structure for ray tracing, it is important

to find the best split for each node. Havran [Hav00] shows that clipping empty space in

the upper levels of a hierarchy may significantly increase rendering performance. In our

algorithm, a Surface Area Heuristic (SAH) is used to find the optimal splitting planes for all

node stages.
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Figure 1: The Figures (a) and (b) illustrate the split of a BIH node. The bounds of the

resulting child nodes are spatially adjusted with respect to the split direction and the prim-

itives contained in the child nodes. This avoids instancing of primitives, but may result in

overlapping bounding boxes, as shown in (b).

2.1 Surface Area Heuristic

The selection of splitting planes directly affects the quality of the acceleration data struc-

ture. The Surface Area Heuristic (SAH) proposed by MacDonald et al. [MB90] is a suitable

estimate for the split quality and ray tracing efficiency. Given split candidate x, the cost

function C(x) is

C(x) = Ct + Ci
AL(x)NL(x) + AR(x)NR(x)

AP

(1)

where AP identifies the surface area of the node to be split. The surface areas of the left

and the right child are represented by AL and AR, whereas NL and NR are the number of

primitives in the left and right child. The constants Ct and Ci reflect the costs for traversal

and intersection, respectively.

In order to accelerate the evaluation of the SAH, MacDonald et al. allow the use of a

limited number of equally spaced splitting splane candidates. In our algorithm, we employ

31 splitting plane candidates per axis in order to determine the best split.

2.2 Bounding Interval Hierarchy

A bounding interval hierarchy is a spatial acceleration data structure which was introduced

by Wächter and Keller [WK06]. While its construction properties are similar to a BVH, they

report that its traversal is as efficient as for a kd-tree. The construction of BIHs is generally

faster compared to other spatial data structures which makes them suitable for ray tracing of

dynamic scenes. The main reason for this is that spatial partitioning schemes need to handle

primitives which overlap the volume boundaries. In BIHs, the bounding boxes of a node are

adjusted to contain all primitives completely, as shown in Figure 1. Thus, instancing is not

required which is a major difference in comparison to kd-trees. As a result, the memory

requirements can be predicted and primitives can be sorted in-place which minimizes the

need for dynamic memory allocation.



1 WHILE nodes IN queue {

2 IF split NOT viable {

3 store (node)

4 } ELSE {

5 FOREACH axis {

6 FOREACH primitive IN node {

7 bin_primitive()

8 }

9 }

10 FOREACH bin {

11 evaluate_costs()

12 }

13 split(node)

14 FOREACH primitive IN node

15 assign primitive to left_child or right_child

16

17 FOREACH primitive IN left_child

18 update_max_bound(left_child)

19

20 FOREACH primitive IN right_child

21 update_min_bound(right_child)

22

23 enqueue_child_nodes()

24 }

25 }

Figure 2: General pseudo code description for building a SAH-based BIH.

The construction of a BIH starts with a single node containing all primitives. This node

is recursively subdivided until the termination criteria are satisfied. The pseudo code in

Figure 2 summarizes the tasks which have to be performed, most of which can be run in

parallel as separate GPU kernels.

2.3 Dynamic Parallelism

For better understanding, we give a brief overview of the terminology used to describe our

asynchronous processing scheme.

A thread is the smallest working unit, which maps directly to a processing unit of the

GPU. Threads execute programs, referred to as kernels, in parallel. A collection of threads

is called a block. In order to run kernels, one or more blocks are launched together in a

grid. An important unit of the CUDA programming model [NVI14] that we utilize in our

algorithm is the warp. A warp is a small set of threads (currently 32) within a block which

perform the same operations in parallel at the same time and are therefore synchronized

implicitly.

Dynamic parallelism is an essential feature of Nvidia’s graphics processors which was

introduced by GK110. In contrast to prior graphics hardware, it allows a kernel to launch

an own child kernel with dynamically adjustable parameters such as block and grid size, to

distribute the resources according to upcoming task. Parent kernels are able to wait for the

results of their own child kernels. We exploit this capability to implement a management



kernel which distributes workload according to the upcoming subtasks without interrupting

the GPUs workflow by returning to the CPU to reconfigure launch parameters.

3 BIH Construction Using Dynamic Parallelism

This section describes the asynchronous processing scheme of our algorithm. As shown in

Figure 2, the BIH construction consists of a number of parallelizable subtasks, which can

be executed as separate kernels. In our system, these kernels are launched by a manage-

ment kernel which represents the management layer of our algorithm. The workflow of the

management kernel is shown in Figure 3.

In our management kernel, we utilize warps as functional entities for several reasons.

First, warps are synchronized implicitly. Therefore, instructions can be assumed to be exe-

cuted in a locked-step fashion for all 32 threads in a warp. Second, specialized intra-warp

instructions, e.g. shuffle instructions, can be used to share and compute information within

warps efficiently.

All BIH nodes are stored in an array which is organized in blocks of size 32. Henceforth,

we will refer to such a block of nodes as chunk. Each chunk is associated with a chunk header

which indicates the actual number of nodes contained in the chunk. All accesses to a chunk

are protected by the corresponding chunk header.

In the management kernel, there is no synchronization between warps, which means all

warps work independently of each other. Each chunk of nodes is processed by a warp.

Within one warp, each thread fetches exactly one node from its chunk. Given the number

of management warps WL, the index of the current chunk B(wi) to be processed by warp wi

is computed by

B(wi) = WLHi + i, 0 ≤ i < WL (2)

where Hi is the current iteration of wi, which is equal to the number of chunks already

processed by wi. After each iteration, a warp moves WL chunks forward along the queue.

Nevertheless, each warp processes only one chunk per iteration.

At the end of each iteration, memory has to be reserved to store the child nodes in

consent with all other warps in the management layer. A chunk of size 32 can generate up

to 64 child nodes. Therefore, a warp may need to reserve up to two chunks. The reservation

of free chunks is realized by means of atomic additions to a global variable which identifies

the index of the first free chunk. In general, warps reserve the appropriate number of chunks

with respect to the number of child nodes produced.

In order to infer the storage location for child nodes, we compute the prefix sum across

the number of child nodes of all threads in a warp. For parallel prefix sums and their

applications, we refer to [Ble90]. After child nodes have been stored in the reserved chunks,

the corresponding chunk headers are adjusted such that their value represents the number

of valid nodes in the chunk. As soon as no more child nodes are produced, reserved chunk

headers are finalized and the warp moves to the next chunk.
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Figure 3: This figure illustrates the workflow of our Large Node Stage. Each kernel (green)

consists of thread blocks (orange). In this example, our management kernel is executed with

four asynchronously working warps (WL = 4). Each of these warps processes up to 32 nodes

in parallel and launches the necessary child kernels. After splitting, the first thread of each

warp reserves chunks for storing the child nodes by means of an atomic counter (blue).

Since warps in our management layer work asynchronously and communication takes

place only by means of atomic additions, it is possible that one warp stores children in a

reserved chunk, while another warp already processes the nodes contained in that chunk.

The amount of valid nodes stored in a chunk is determined by the corresponding chunk

header. Of course, a thread reads and processes its corresponding node only if it is valid.

However, a warp may end the current iteration and advance to the next chunk only if the

chunk header of its current chunk has been finalized, indicating that no further nodes will

be added to the chunk, and all nodes have been processed.

In summary, warps of our management layer are coupled very loosely and the BIH is

constructed in a highly asynchronous manner. Its construction takes place without any

explicit synchronization points. As soon as a warp has processed its current chunk, it moves

on to the next one immediately. For these reasons, warps in the management layer can be

located in different computational blocks and all streaming multiprocessors can be utilized

from the beginning.
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Figure 4: This Figure illustrates the workflow of our Small Node Stage. In contrast to

the LNS, each warp processes 32 chunks (1024 nodes). For each node, one single warp is

launched which performs all necessary subtasks.

4 Node Stages

As the depth of the acceleration structure increases, the amount of nodes which have to

be processed grows exponentially. At the same time, the number of primitives per node de-

creases quickly. For this reason, we adjust the level of parallelism in order to better distribute

the parallel processing power to the granularity of the problem. Similar to [ZHWG08], our

management layer is organized in two node stages – a Large Node Stage (LNS) and a Small

Node Stage (SNS). Our Large Node Stage is designed to work on a relatively small amount

of nodes containing many primitives, whereas our Small Node Stage invests its capacities

into processing thousands of nodes with a small number of primitives per node in parallel.

4.1 Large Node Stage

The LNS makes extensive use of dynamic parallelism. As there are few nodes in the queue

with very high primitive counts, three specialized kernels are launched – one for every ma-

jor task of the construction process, as shown in Figure 3. The amount of parallelism of

these grids is dynamically adjusted to the granularity of the tasks. First, the best split is

determined by a kernel specialized to generate and evaluate the SAH for 31 splitting plane

candidates per axis. This results in 32 bins per axis which can be sorted efficiently using

intra-warp instructions. Similarly, a specialized kernel is launched to parallel sort all primi-

tives of a node with respect to the splitting plane and the splitting axis. The third kernel is

optimized for the parallel adjustment of the child nodes’ bounding boxes.

4.2 Small Node Stage

The most important difference between our two node stages is that each warp in the manage-

ment layer of the Small Node Stage fetches 32 chunks. This means that every management

thread is responsible for one chunk (32 nodes) per iteration.
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Figure 5: This Figure shows the models used for performance tests.

In order to process all nodes in the chunk at once, each thread launches one single grid.

The number of warps in that grid equals the number of nodes in the chunk. In contrast

to the LNS, all major tasks of the construction are performed in this grid, as indicated in

Figure 4.

If WS represents the number of management warps in the Small Node Stage, 1024 ·WS

nodes are processed in each iteration. In comparison, the SNS processes considerably more

nodes at once than the LNS. However, for reasons of efficiency, nodes may only enter our

Small Node Stage if the number of primitives per node is less than 1024.

Another important difference between our two node stages is the location where admin-

istrative tasks, e.g. storing child nodes, are performed. In the Small Node Stage, these

administrative tasks are moved into the newly launched child grid. This has the advantage

that warps in the management layer can proceed to the next chunk immediately after the

child grid is launched.

5 Results and Discussion

All of our results were measured on an Intel Core i7-3820 CPU with 32 GiB of RAM and

a Nvidia GTX Titan GPU. For ray casting, a näıve GPU implementation with no further

optimizations was used. The window resolution was set to 1664x1024.

The BIH construction time depends on the number of warps in the management layer.

More specifically, we observe that the optimal construction time is achieved when the number

of warps is close to the number of streaming multiprocessors (SMX) of the graphics hardware.

However, since a thread block can only run on one streaming multiprocessor, we distribute

all warps of our managment layer into distinct blocks. In our implementation, the number

of management warps for both node stages WL and WS was set to 16 (close to the 15 SMX

of the GK110).

For performance measurements, we used the three models shown in Figure 5. Table 1

shows the corresponding number of triangles and construction times, whereas Figure 6 shows

the construction and ray casting performance for different configurations for the model Fairy

Forest. We used this model to find the optimal settings for the combined performance for

construction and ray casting performance. The primitive threshold was used as an additional



Model #Triangles [ZHWG08] [DPS10] [LGS+09] Our approach

Lucy 79k n.a. n.a. n.a. 25 ms

Fairy Forest 175k 77 ms 57 ms 488 ms 45 ms

Clio 257k n.a. n.a. n.a. 56 ms

Table 1: This Figure shows the construction times of our algorithm and other approaches.

Unfortunately, a direct comparison with the other approaches is not possible, because dif-

ferent data structures (kd-trees and BVH) and heuristics have been used and the tests were

performed on slower hardware (GeForce 8800 ULTRA, GTX285 and GTX280). In compar-

ison to our approach, only [LGS+09] and [DPS10] use a SAH for all node stages. Zhou et

al. [ZHWG08] use a SAH only in the lower hierarchy levels which significantly reduces costs.
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(b) Ray casting performance using the BIH

Figure 6: These diagrams show the times for construction and ray casting of the model Fairy

Forest in dependence of the maximal number of primitives per leaf node. Obviously, smaller

leaf nodes are optimal for ray casting (6b). In addition, we observe that the construction

time is almost independent using both node stages (6a) which proves the efficiency of our

multi-stage concept.

termination criterion to avoid degeneracies and to evaluate the efficiency of our node stages.

Unfortunately, a direct comparison to existing work is quite involved. A performance

comparison would require a reimplementation of other approaches, because the used graphics

hardware lacks the necessary capabilities we require. Furthermore, the acceleration data

structures produced by these approaches are different. Danilewski et al. [DPS10] utilize five

highly optimized node stages, which seems advantageous compared to our system. However,

our system avoids the communication overhead, but measuring this performance gain is also

quite involved and remains future work. Zhou et al. [ZHWG08] use much slower hardware,

but refrain from using a SAH for all hierarchy levels which highly reduces construction costs.

An interesting observation is that the frame rate is almost entirely dependent on the

ray casting times for our models. This is because the BIH construction performs almost

independent of the maximal number of primitives per node. Furthermore, we evaluated

the efficiency of our node stage concept. We limited the number of maximal primitives per



node to measure the scaling of the Large Node Stage. Using only the Large Node Stage,

the construction times increase exponentially, which indicates that too few threads need

to handle an exponentially growing number of child nodes. Using both node stages, the

construction time is almost constant with respect to the number of primitives in the leaf

nodes which shows that the Small Node Stage is capable of dealing with a larger number of

nodes.

Since the size of a chunk (32 nodes) is chosen relatively large, chunks are usually not com-

pletely filled. The reserved chunks of a warp are filled entirely only if the number of child

nodes of an iteration is a multiple of the chunksize or zero. Therefore, the efficiency of our

asynchronous management scheme comes with increased memory consumption. An evalua-

tion of our memory requirements revealed that the overhead introduced by our management

layer was in average 44% for our models.

Our work focuses on the construction of bounding interval hierarchies for triangle meshes.

It is conceivable that our approach can be generalized and used for the construction of

different acceleration data structures. Furthermore, our current implementation of the BIH

construction can be extended to every primitive type that provides a bounding box, or even

whole objects.

6 Conclusion and Future Work

In this paper we explore new possibilities which dynamic parallelism provides for the gen-

eration of acceleration data structures. In our work we focus on the management layer we

developed. Our algorithm exploits the implicit synchronization of threads within a warp

to avoid costly explicit synchronization of thread blocks. The warps of our management

layer are loosely coupled which leads to a highly asynchronous and efficient construction of

a bounding interval hierarchy. Our results show that our implementation efficiently utilizes

dynamic parallelism and constructs SAH-based BIHs for hundreds of thousands of primitives

at interactive frame rates. This fast and complete rebuild of the acceleration data structure

allows for real-time ray tracing of dynamic scenes.

Although we use only two node stages, we observe that the utilization of an additional

Small Node Stage accelerates the BIH construction considerably compared to utilization

of a single node stage. We conjecture that employing a higher number of stages, similar

to [DPS10], would lead to even better adjustment to node granularities and increased BIH

construction performance.

In this work, we construct the BIH per frame from scratch. However, for small changes

in scene topology an iterative approach for updating existing hierarchies may suffice for

interactive ray tracing performance. Furthermore, it is conceivable to rebuild the acceleration

structure only after several frames and to update it on a per-frame basis.

The memory overhead introduced by our algorithm cannot be neglected. Reserving large

chunks of memory reduces the propability of concurrent access to the atomic variables, which

effectively lowers the waiting time for every working warp. It would be desirable to profile



different chunk sizes in order to find the optimal parameters that balance memory overhead

against atomical access collisions.

Our results show that SAH-based BIHs can be generated on-the-fly for medium-sized

scenes. This allows for interactive ray tracing of dynamic scenes which may highly increase

the visual quality, spatial perception and degree of immersion in virtual reality applications.
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