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Fig. 1: guacamole allows rapid development of complex and immersive multi-user VR-applications.

Abstract— In this paper, we present guacamole, a novel open source software framework for developing virtual-reality applications.
It features a lightweight scene graph combined with a versatile deferred shading pipeline. In our deferred renderer, the geometry
processing is decoupled from subsequent shading stages. This allows us to use the same flexible materials for various geometry
types. Materials consist of multiple programmable shading stages and user-defined attributes. In contrast to other deferred shading
implementations, our renderer automatically infers and generates the necessary buffer configurations and shader programs. We
demonstrate the extensibility of our pipeline by showing how we added rendering support for non-polygonal data such as trimmed
NURBS and volume data. Furthermore, guacamole features many state-of-the-art post-processing effects such as ambient occlusion
or volumetric light. Our framework is also capable of rendering on multiple GPUs for the support of multi-screen displays and multi-
user applications.

Index Terms—computer graphics, virtual reality, deferred shading, scene graph

1 INTRODUCTION

Most virtual-reality systems offer a high-level interface to hide the
complexity of the underlying rendering process from the application
developer. Traditionally, a scene graph is used to organize the contents
of the virtual scene. For rendering, the scene graph is traversed, serial-
ized and passed to the rendering engine. In many modern 3D engines,
such as Unity 3D [7], Unigine [23] or CryEngine [15] [16], rendering
is based on a deferred shading concept [20]. Most of these systems
perform very well in terms of visual quality, but an integration of user-
defined geometry types and materials seems intricate. In particular, the
support of advanced rendering techniques, such as volume ray-casting,
direct rendering of higher order surfaces or point-based rendering, is
difficult to achieve. Furthermore, in the implementations of the afore-
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mentioned systems the layout of the geometry buffers is fixed which
impedes the ability to add user-defined materials and shading effects.

In contrast, open source scene-graph frameworks are often exten-
sible in terms of user-defined geometry types and shading routines.
However, most of them are based on a forward-rendering concept and
lack the advantages of deferred shading approaches. Furthermore, in a
forward-rendering approach, the programmable shaders used for geo-
metric computations and shading may interfere with each other. In this
case, either metaprogramming or deferred shading becomes necessary.

These considerations led us to the following set of requirements for
a new framework for virtual-reality applications:

• Extensibility: A lightweight scene graph which can easily be ex-
tended with arbitrary geometry types and materials

• Flexibility: A flexible shading concept which allows for user-
defined materials without being limited to fixed geometric repre-
sentations or shading routines

• Configurability: User-configurable support for multi-pass, multi-
screen, multi-GPU and multi-user rendering

• Transparency: A rendering pipeline which facilitates the integra-
tion of volume ray-casting and order-independent transparency

Based on these requirements, we developed a software framework
which combines a flexible deferred shading pipeline and an extensi-
ble lightweight scene graph. The main contributions of our system
are a flexible multi-stage material concept, an extensible design for
a deferred rendering system and its versatile multi-pass capabilities.
In our concept, a material is defined by a shading model and a user-



defined configuration. A shading model consists of multiple shading
stages. In contrast to other deferred rendering approaches, all shad-
ing stages remain programmable. This is enabled by automatically
generating the layout for the intermediate image buffers according to
the materials in use. The linkage between a material and user-defined
geometry types is achieved using metaprogramming techniques. In
guacamole, a pipeline encapsulates the deferred shading process. The
output of a pipeline is a rendered (stereo-)image which can be dis-
played or serve as input to another pipeline. The extensibility of our
design is demonstrated by the integration of direct rendering support
for trimmed non-uniform rational B-spline (NURBS) surfaces as well
as volume ray-casting. guacamole is platform-independent and avail-
able as open source 1.

2 RELATED WORK

Many modern rendering systems are based on the deferred shading ap-
proach proposed by Saito and Takahashi [20]. In this concept, the ge-
ometric properties of the projected surface are stored in an off-screen
render target (G-buffer) to defer shading computations for each pixel.
While our system also follows the general idea of deferred shading, it
differs from existing approaches in various aspects.

In particular, there are a variety of 3D engines such as Unity 3D [7],
Unigine [23] or CryEngine [15] [16]. The deferred lighting path in the
game engine Unity 3D is a three-pass rendering approach. In the first
pass, a minimal G-buffer is used to gather all information necessary for
lighting. In the second pass, all light sources are rendered for lighting
computations. After the lighting pass, all objects are rendered again
for final shading. However, rendering twice is not an option for us
because most of our applications deal with very large models. The
game engines Unigine and CryEngine are both equipped with numer-
ous state-of-the-art rendering techniques. In contrast to our approach,
both engines are based on a fixed G-buffer layout. While the visual
quality is very appealing, their extensibility seems unclear because
both implementations are closed source.

In our multi-pass concept, the lighting computations are processed
in a separate pass, as suggested by [9]. In addition, we adapt
some of the ideas of inferred lighting as proposed by Kircher and
Lawrance [11]. In their approach, a full-screen quadrilateral polygon
is rendered for each non-shadow casting light source in the scene. For
each pixel, a lighting shader is executed and its results are stored in
a low-resolution lighting buffer (L-buffer). As the screen-space influ-
ence of each light source is limited, scissoring or depth-stencil tech-
niques are proposed to optimize this pass. In contrast to their approach,
we utilize proxy geometries of the light sources for optimization.

McCool et al. [14] propose a C++-framework for metaprogramming
of GPUs. In their approach, the shader programs and memory bind-
ings necessary to perform general purpose computations are automati-
cally generated. While their implementation provides a generic frame-
work for parallel computations, we require shader meta-programming
techniques for shader code generation. Foley and Hanrahan [8] pre-
sented the shading language Spark in which logical shading features
are encapsulated in classes. When features are composed, the neces-
sary shader code, including the inter-stage communication, is gener-
ated by the Spark compiler. In contrast to their approach, the logical
stages in our shading concept are in different passes. This requires the
generation of shader code and buffers for inter-pass communication.

In our research, we use the software framework Avango [12], a re-
vised version of Avocado [26], for the rapid development of proto-
typical VR-applications. Avango employs OpenSceneGraph [6] for
rendering. While the disadvantages of such forward-rendering ap-
proaches have already been discussed, we additionally found that
OpenSceneGraph has performance issues with respect to scalability
and multi-GPU rendering. Consequently, we integrated guacamole
in Avango as a replacement for the OpenSceneGraph rendering mod-
ule. All other modules either do not depend on the rendering or could
easily be adapted which allows us to use existing capabilities such as
distribution support and interactive Python scripting.

1Download guacamole from https://github.com/vrsys.
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Fig. 2: There are three main components in guacamole which are as
loosely coupled as possible. Resources are referenced in the scene
graph and accessed by the renderer. The renderer receives a serialized
copy of the scene graph in each frame.

#create scene graph
graph = SceneGraph()

#add nodes
graph["/"].addChild(Node("car"))
graph["/car"].addChild(Node("wheel"))

#translate node
graph["/car/wheel"].translate(13, 3, 7)

Fig. 4: Simple pseudo code of adding, addressing and manipulating
nodes using UNIX-style paths.

3 DESIGN

In this section, we present the main structure and components of our
system and focus on the most distinctive features with regard to ex-
isting works. The three main components of our system are the scene
graph, a deferred renderer and the resource management, as shown in
Figure 2.

3.1 Scene Graph

One of guacamole’s main components is a lightweight, yet flexible
scene graph which is used to set up transformation hierarchies. There
are several pre-implemented node types such as dedicated nodes for
light sources, nodes which instantiate geometry data in the scene or
nodes to describe views into the virtual environment. In addition, the
scene graph can be easily extended by new node types.

Our scene graph is lightweight in terms of a small memory foot-
print related to rendering-relevant resources, also referred to as assets.
In complex three-dimensional scenes, geometry and texture data may
need large amounts of memory. Therefore, nodes representing graphi-
cal objects simply hold a reference to an entry in a dedicated database
where the actual asset data is stored. Note that nodes are used to in-
stantiate asset data in the scene.

For the convenience of designing a virtual environment, we provide
a dedicated class for a scene graph. It stores a pointer to a hierarchy’s
root node. The pseudo code in Figure 4 shows an example of its usage.
Our system supports using multiple instances of this class, each of
them representing a virtual scene. This concept simplifies the task to
manage multiple virtual scenes in a single application. It is possible
to simultaneously show different views of these scenes on multiple
displays. Furthermore, the developer may implement scene-in-scene
techniques such as world-in-miniature [24] or through-the-lens [25].
A realization of the latter is shown in Figure 7a.

https://github.com/vrsys
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Fig. 3: In guacamole, rendering data is processed in multiple threads. The application’s main loop handles user-defined actions, input data and
scene graph manipulation. Render clients are assigned to each GPU and informed of application-side scene graph updates. Therefore, a copy
of the current graph is generated, whereas the transformation hierarchy is resolved to absolute transforms. Each render client maintains its own
thread and performs serialization, culling and rendering of the updated scene graph.

As a basic feature, each of guacamole’s nodes stores a transforma-
tion matrix, a name string and is able to hold pointers to child nodes.
This is quite unusual and a major difference compared to existing
scene graph implementations [3]. As a result, an explicit distinction
between leaf nodes (nodes without children) and inner nodes (nodes
which may have children) does not exist. Furthermore, each node may
have a spatial representation in the scene because each stores its own
transformation matrix. We believe that this design decision offers a
more intuitive hierarchy construction for the developer and reduces
the scene graph’s depth and, consequently, traversal overhead.

In many virtual reality scenarios, it is useful to restrict the render-
ing to specific nodes in the scene. For example, in multi-user scenar-
ios, each user may see private information which is not shared with
others[1]. Therefore, we added a group concept to our scene graph.
In guacamole, each node can be assigned to different groups. In order
to define which of the groups have to be drawn, it is possible to spec-
ify a group mask for rendering which may combine multiple groups
with logical operators. Our renderer is capable of checking the group
mask against the nodes’ groups. For example, a node with the group
debugGeometry could be excluded from the rendering by using the
group mask !debugGeometry. A similar concept with bit masks is
found in most common scene graph implementations [6][19]. With
this string based appoach we force the application developer to write
more expressive code.

Furthermore, our scene graph class provides a convenience inter-
face which allows accessing scene graph nodes via string labels. These
strings represent UNIX-style paths in the scene graph and are used to
fetch nodes with a known name in a known hierachy. An example of
the usage can be seen in Figure 4.

3.2 Resources

As mentioned in section 3.1, resources such as geometries or textures
are strictly separated from the scene graph’s structure. Instead of hold-
ing these assets in the scene’s hierarchy, we provide databases for stor-
ing them. Connecting resources and scene graphs is possible through
references to database entries. The unique keys to the databases are
stored in the corresponding nodes. Thus, several nodes may refer-
ence the very same rendering resources without storing the actual data
multiple times. The resources are accessed by the renderer after the
serialization and culling phase as described in section 3.3.

The classes used for databases and assets provide automatic multi-
context uploading and handling. This behavior is required because the
rendering system is capable of working on multiple GPUs in parallel.
Each of the render clients manages its own OpenGL context and the
corresponding graphics card memory.

3.3 Rendering

In guacamole, viewing setups are expressed via camera abstractions.
A camera refers to screen and eye nodes in the scene graph and thereby
defines a certain viewing frustum. Furthermore, a camera specifies the
scene graph instance to be rendered and may contain a group mask as
mentioned in section 3.1 to restrict the rendering to parts of the scene
graph.

In a virtual environment, smooth interaction requires high update
rates of the application. Thus, guacamole’s architecture relies on mul-
tiple threads as illustrated by Figure 3. The main loop, which is re-
sponsible for application logic, scene graph manipulation and input
processing, is run in a single thread. However, viewing setups that are
rendered on different display devices require that the rendering works
in parallel. Therefore, a render client is assigned to each device which
maintains its own thread and OpenGL context.

At the end of each application frame, an immutable copy of the
scene graph is created. During copying, world space transformations
for each node are created and their bounding volumes are updated ac-
cordingly. Then, a pointer to the copy is passed to each render client.
Since the copied scene graph is immutable, all render clients can pro-
cess it without requiring any synchronization between the different
rendering threads. After the last thread finishes, the data structure will
be freed automatically.

The actual rendering is done by the render clients in their respec-
tive threads. Each of them traverses the scene graph structure and
serializes it while simultaneously culling against its particular viewing
frustum. The serialized version of the graph works with pointers to the
leaf nodes of the immutable scene-graph copy. After serialization and
culling are finished, the rendering of the remaining nodes is triggered
and guacamole’s deferred renderer processes the data.

This architecture allows independent frame rates for application and
rendering. Thus, interaction and scene graph manipulation are not
slowed down if the rendering speed is reduced.

Occasionally, the rendering frame rate will drop below the appli-
cation frame rate which is usually limited to about 60 Hz. In this
case updated scene graph copies are completely ignored by the render
clients if the actual rendering is still busy. Possible enhancements of
this behavior are described in chapter 7.

4 DEFERRED SHADING

In the following sections, we would like to present the design of our
rendering concept. As already mentioned, the renderer of guacamole
is based on deferred shading. In this approach, the actual shading is
decoupled from the scene’s projection to the screen. First, all surfaces
are projected into screen space and rendered without performing any
shading computations. Rendering may be directly performed by the
rasterization hardware or in a shader, e.g. for implementing per-pixel
ray casting. Instead, all the information that is necessary for shading
is written into an off-screen render target, which is also referred to as
geometry buffer or simply G-buffer [20]. Finally, this image-based
data is used to shade each pixel.

The main advantage of this approach is that computationally expen-
sive shading operations have to be done only once per pixel instead
of once per fragment. Therefore, it is possible to create extensively
shaded scenes with numerous light sources and a high depth complex-
ity while still maintaining interactive frame rates. An example scene
with approximately one hundred light sources is shown in Figure 7c.

4.1 Pipeline Concept
In guacamole, deferred shading is performed in a pipeline. The in-
put into a pipeline is a scene graph, the corresponding resources in
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Fig. 5: The deferred renderer of guacamole is split into five passes.
The geometry pass projects any kind of geometry data into screen
space and stores all relevant data in the G-buffer. The lighting pass
accumulates incoming light per pixel. This information is used by the
shading pass which performs the actual shading of the pixels. The op-
tional compositing pass may blend transparent objects with the result
of the shading pass while considering the G-buffer’s depth informa-
tion. Finally, post processing effects are applied in screen space.

the databases and a camera. In general, the output of a pipeline is a
rendered (stereo-)image. If the pipeline is assigned to an output win-
dow, it displays the final image. This output window defines on which
graphics device the rendering is performed. While a detailed descrip-
tion of this pipeline is given later in this section, we would like to point
out a major strength of our system: the capability of easily combining
pipelines for multi-pipeline rendering.

In particular, it is possible to define a dependency graph between
multiple pipelines in order to define their execution order. Further-
more, a pipeline’s final image can be used as texture input for a ma-
terial. Thus, multiple pipelines can be combined to achieve advanced
rendering effects such as virtual portals, as shown in Figure 7a, or the
screen-space refractions shown in Figure 7b.

A pipeline is divided into five passes, as shown in Figure 5. Each
pass uses the output of previous passes and computes new per-pixel
information for subsequent passes. The following sections describe
the purpose of each of the five passes.

4.1.1 Geometry Pass

The main task of this pass is to project any kind of geometry to screen
space and render the geometry. For each geometric representations,
a type-dependent rendering method is used. The required resources
are bound and the respective shader programs are executed. For each
pixel, all data which is relevant for shading such as depth value, ma-
terial index, surface normal and additional, material-dependent data is
stored in the G-buffer. Therefore, a dedicated interface consisting of
several built-in variables and functions is used.

For non-polygonal representations such as heightfields, solids,
parametric surfaces, point clouds or even 3D-video, an advanced ren-
dering method may be required. However, the provided G-buffer in-
terface is the only connection between the rendering method and the
actual shading process. This design allows us to integrate any ren-
dering approach, whether it is based on ray casting or a multi-pass
method. In section 5.2, we demonstrate this feature by extending our
system with a rendering approach for parametric surfaces.
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Fig. 6: The shading models of guacamole’s materials may influence
several passes of the deferred shading pipeline. At run time, the shader
code of all user-defined shading models is automatically compiled to
shader programs which we refer to as uber-shaders. Based on the ma-
terial ID, which is stored per pixel in the G-buffer, the appropriate
shader code gets executed. Using the four programmable stages of a
shading model, complex materials and effects can be defined.

4.1.2 Lighting Pass
In this pass, lighting is computed for each light source for each pixel.
The result is stored in the L-buffer, whose layout is entirely dependent
on the employed materials. For example, if all materials used in the
scene are based on Phong lighting, it will contain information on dif-
fuse and specular lighting per pixel. The following steps are performed
for each light source:

1. Shadow map generation: If the light source casts shadows,
shadow maps are generated. Our implementation currently sup-
ports shadows for spot lights only. A geometry pass is executed
with a viewing frustum corresponding to the light’s cone. The
resulting depth buffer is used as a shadow map in the subsequent
steps.

2. Fragment generation: Fragments are generated for each lit pixel
by rendering a proxy geometry. The proxy geometry depends on
the light source’s type. Spheres are used for point lights, cones
for spot lights and full screen rectangles for sunlight.

3. Shading: Based on the information in the G-buffer and the op-
tional shadow map, the amount of incoming light is calculated
and accumulated per pixel.

4.1.3 Shading Pass
The shading pass processes lighting and geometry information from
the L-buffer and G-buffer. It combines them with material-dependent
operations. Its output is an intermediate pixel color which is passed to
the compositing pass.

4.1.4 Compositing Pass
The compositing pass uses the color and depth information from the
G-buffer to perform blending with transparent objects. The result is
stored in the same output texture used for the shading pass. The depth
value in the G-buffer remains unchanged because it is not possible to
composite an appropriate depth value from multiple transparent con-
tributions. After compositing, we perform the post-processing pass.
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Fig. 7: In image (a), the combination of two pipelines is used to create a portal which shows a view into another virtual scene. The first pipeline
is rendered to a texture which is then used by the second pipeline. Image (b) shows the use of multiple pipelines for advanced material effects.
In this example, the illusion of refraction is achieved by using a pipeline’s result as input for the glass material. The very large amount of small
light sources shown in image (c) demonstrates one advantage of deferred lighting.

4.1.5 Post-Processing Pass

This final pass may use all data of the previous passes in order to
create full screen post-processing effects. For now, we implemented
FXAA [10], high dynamic range tone-mapping, volumetric light,
bloom, screen space ambient occlusion (SSAO) [5] [22], fog and a
vignette effect. This set of effects is easily extensible. Two examples
of some of these effects are shown in Figure 1. These effects can be
enabled, disabled and configured by the application developer but are
executed in a fixed order. In future versions, this will be configurable,
as well.

Be mindful that, in the compositing pass, no other information ex-
cept the pixel color was changed. This may affect the results of this
pass. In particular, for some post-processing effects such as volumet-
ric light or SSAO, a valid depth information is required. If the depth
and color information are inconsistent, the results of these methods are
undefined and may contain visual artifacts. This is a limitation in our
current design. However, in a future version, we will solve this prob-
lem by splitting this pass into two separate stages. Thereby, it will be
possible to perform compositing between these stages; the first stage
applies all screen-space effects based on geometry, the second those
based on color only.

4.2 Material Concept

The main motivation for the design of the material concept was to pro-
vide the maximum flexibility for influencing the deferred shading pro-
cess. As described in section 4.1, our rendering pipeline accumulates
the output of five passes. The first three perform on individual object
information, the latter two mainly on the shaded image. In our mate-
rial system, all object-dependent passes remain programmable, which
is a major difference to existing deferred shading implementations.

Thereby, a material is designed such that it treats all objects the
same, independent of the underlying geometric representation. For ex-
ample, a developer may assign the same material to a triangular mesh
or a parametric description.

In guacamole, materials consist of two parts – a shading model and
a material description. A shading model describes the operations and
parameters used to define the appearance of an object’s surface. A
material description contains a reference to a certain shading model
and the parameter values to configure the shading operations. Multiple
material descriptions may thereby refer to the same shading model,
providing different values, such as textures, colors etc.

A shading model consists of four different, programmable stages as
shown in Figure 6. Each of them contains the shader code for the de-
sired computations and specifies the output variables which are passed
to subsequent stages. The input to these stages also defines the ma-
terial description which typically consists of a set of parameters, e.g.
textures, color coefficients or constants for functional shading.

4.2.1 Geometry Stage

The geometry stage offers the developer to alter the object’s appear-
ance based on a geometric level. The shader is executed in a per-vertex
manner on the previously processed geometry data. The input is the
same vertex information for each geometry type and is therefore cru-
cial for material-data independence. This is enabled by providing the
shader interface mentioned in section 4.1.1. An application developer
can influence a vertex’ position and normal or may even create new
vertices in the geometry shader. Rendering techniques such as dis-
placement mapping may be applied in this stage. Additionally, any
user-defined output depending on vertex information may be passed
to the following stages.

4.2.2 Visibility Stage

The visibility stage provides the developer with the possibility to di-
rectly influence the data which is passed to the G-buffer. It performs
on the fragments generated by the rasterization and may use the user-
defined per-vertex output of the previously run geometry stage. The
developer may alter geometric properties, e.g. surface normal and
depth, before they are stored in the G-buffer or even discard fragments
to enable see-through techniques [2]. Typical examples of the usage of
this stage would be normal or parallax mapping. Note again that any
additionally user-defined output depending on an object’s fragments
may be generated and passed to the following stages.

After the geometry stage and the visibility stage are completed, all
generated information is written to the G-buffer. The two remaining
stages perform on the per-pixel information stored in the G-buffer, i.e.
only the visible parts of the objects are actually being shaded.

4.2.3 Lighting Stage

The lighting stage is used to accumulate all light incident to a certain
pixel. Our system provides the distance and direction to and the color
and intensity of every light source in the scene. Additionally, shadow
maps for shadow-casting lights are generated and combined with the
light intensity. In the lighting stage, a developer has access to all data
stored in the G-buffer and the parameters of the light source. A major
use case for this stage is the implementation of an individual lighting
model such as anisotropic or Phong shading. The output of the lighting
stage is written to the L-buffer. The layout for this buffer is inferred
automatically, as described in section 4.3. For Phong shading, the
diffuse and specular intensity would be stored in separate layers.

4.2.4 Shading Stage

The shading stage is used to combine the lighting information from the
L-buffer with object information from the G-buffer. While the previ-
ous lighting stage is intended to compute intensities only, the shading



(a) (b) (c)

Fig. 8: These images show some results of the rendering methods we integrated into our system. The rim model rendered in image (a) consists
of trimmed NURBS surfaces. Image (b) shows the result of the integrated volume ray-casting. The composition of mesh-based geometry,
trimmed NURBS surfaces and volume data is demonstrated by image (c).

stage may add color information. Furthermore, techniques like reflec-
tion mapping or advanced computations that utilize image-space ray
tracing based on the G-buffer may be applied at this stage.

4.3 Automatic Buffer Concept

When implementing a shading model, a developer may define arbi-
trary output variables for the different shading stages. It is necessary
that all variables are written to the corresponding buffers, in order to
provide them to the subsequent stages. Thus, guacamole configures
G-buffer and L-buffer layouts automatically and compiles so-called
uber-shaders at run-time. These uber-shaders contain the shader code
for each shading model and the uniform input-mapping for each ma-
terial. Based on each pixel’s material ID stored in the G-buffer, the
appropriate shader code is executed.

Our system determines an optimal buffer configuration and creates
the corresponding uber-shaders automatically. It is possible to pass
different data types such as floats, float vectors, booleans or integers
between stages. If the number and type of output variables differ be-
tween shading models of a virtual scene, one buffer layer will be used
by multiple shading models for different purposes. As a consequence,
adjacent pixels referring to distinct shading models may store differ-
ent kinds of information. For example, a diffuse color of one shading
model is stored in the same buffer as another shading model’s texture
coordinates.

Some post-processing effects, such as SSAO or fog, are in need of
information in addition to the final color value. Therefore, a few layers
of the G-buffer and L-buffer have to be predefined. An example of a
buffer configuration is visualized in Figure 10.

The G-buffer contains a 24 bit depth buffer which is also used to
reconstruct the fragment’s position in world space. Furthermore, a
16 bit unsigned integer stores the ID of the material for the pixel. Fi-
nally, the surface normal in world space is stored in a 16 bit RGB
buffer. All other layers in the G-buffer depend on the employed shad-
ing models.

The L-buffer contains no predefined buffers. In a virtual scene con-
taining only materials which are not affected by light sources, no L-
buffer will be generated. Typically, each shading model will store dif-
fuse and specular lighting information.

5 EXTENSIBILITY

The main motivation for the multi-pass design of our system is the in-
tegration of advanced rendering techniques. In this chapter, we would
like to present some of the extensions we have already integrated into
the system. These extensions relate to following parts of our system:
material concept, geometry pass and compositing pass. In section 5.1,
we show how materials that rely on multi-pass rendering can be con-
figured easily. Afterwards, we describe an extension which adds direct
rendering support for trimmed NURBS surfaces in the geometry pass

(see section 5.2) and in section 5.3, we describe how the composite
pass is used to integrate volume ray-casting.

5.1 Materials
The material concept of guacamole allows great extensibility on the
application side. As mentioned in section 4.2, the developer may in-
fluence an object’s appearance on the vertex and fragment level. Fur-
thermore, multiple pipelines may be concatenated for the rendering
process. The final image of each pipeline can be accessed by the ma-
terials. Thus, the material system can be used to implement advanced
effects such as screen space local reflections or screen-space refrac-
tions (as shown in Figure 7b) based on the previous frame’s final image
or another pipeline’s output.

As another example, multi-user see-through techniques [2] may be
applied by appropriately configuring the visibility stage. For that pur-
pose, the world position of the object not to be occluded is specified
as input of the shading model. This position is updated in the appli-
cation’s main loop each frame. In the visibility stage, all fragments
that are between the object’s position and the viewing position are dis-
carded in a fixed or configurable cone.

The extensibility of guacamole’s material system enables the devel-
oper to implement many other advanced visual effects. In order to sup-
port and simplify the material development, we provide a lightweight
editor written in C++ with GTKMM 2. Figure 9 shows the graphical
user interface of the material editor.

5.2 Direct Rendering of Trimmed NURBS
In our current implementation, we added direct rendering support for
trimmed NURBS surfaces. This parametric representation is typically
used in the CAD industry, for details see [18]. While there are nu-
merous approaches based on either tessellation or ray casting [17], we
propose a hybrid approach which combines the advantages of both
techniques.

The challenge of rendering trimmed NURBS can be divided into
two major tasks: projecting the surface to the screen and trimming the
surface with regard to its domain. For the projection, we utilize the
tessellation capabilities of current graphics hardware. However, our
adaptive tessellation scheme is implemented as a two-pass algorithm,
as shown in Figure 11, because of the limited vertex output of the
tessellation control shader.

In the first pass, a quad patch is rendered for each surface in the
scene. We approximate the tessellation level which is necessary to
guarantee that all triangular edges are shorter than the tolerated screen-
space error. If this level exceeds the hardware limit, we tessellate such
that a second tessellation at maximum level would achieve an accurate
result. In the other case, we just pass the original patch. In both cases,
the resulting patches are passed to the geometry processing and they
are stored as a transform feedback. In the second pass, we complete

2http://www.gtkmm.org, last visited on 01/23/2014
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Fig. 10: The automatic buffer configuration produces shading-model dependent buffer layouts for each G-buffer and L-buffer. The picture
shows an example configuration, including a G-buffer with (from left to right) a 24 bit/pixel depth layer, a 16 bit/pixel unsigned int layer for
material IDs, a 48 bit/pixel float RGB layer for normals and a 48 bit/pixel float RGB layer for diffuse material colors. The L-buffer consists of
a 48 bit/pixel float RGB layer for diffuse light colors and a 48 bit/pixel float RGB layer for specular terms as used in standard Phong shading.
Additionally, one 48 bit/pixel float RGB buffer is used for combining G-buffer and L-buffer information. The rightmost layer is used by the
compositing pass and is identical to the previous one. However, another 48 bit/pixel float RGB layer is produced by the post-processing as the
final image (partly visible at the top).

the desired tessellation and apply the trimming during fragment pro-
cessing. Therefore, we use the direct trimming approach proposed by
Schollmeyer and Froehlich [21].

In order to define the binding between geometry pass and shading
model, we use a set of built-in variables. These comprise geometric
properties such as position and normal. The integration of trimmed
NURBS shows that even multi-pass rendering methods can easily be
added to our system.

5.3 Volume Ray-Casting

In our pipeline concept, all transparent objects as well as graphics gen-
erated by external libraries need to be composited with the intermedi-
ate image result in the compositing pass. Thus, we perform volume
ray-casting in the compositing pass by a two-pass approach: first, the
volume’s bounding box is rendered into a depth texture for ray gen-
eration. Secondly, ray casting is initiated by rendering a fullscreen
quad. All rays are then sampled in front-to-back order until the depth
of corresponding pixel in the G-buffer is reached or the ray exits the
volume. The accumulated color is written into the G-buffer. There-
fore, the color and depth texture of the G-buffer needs to be bound as
both input and render target. This is a conservative approach because
only one ray is processed per-pixel. This approach obviously also al-
lows for early ray termination. Note that the texture for ray generation

Fig. 9: This Figure shows our graphical user interface for material
development. As indicated by the upper right toggle button, it is cur-
rently in material edit mode. In the left box, there are all materials of
the project. The right box shows the material description correspond-
ing to the selected shading model. In this example, a parallax-mapping
material is configured by setting the appropriate textures and parame-
ters.

is the only additional memory necessary to perform the compositing.
All other textures either bound as shader input or render target are an
existing part of the G-buffer.

Figure 8 shows the resulting images of our approach. The volume
is composited correctly with the existing geometry in the G-buffer.
Currently, our system is limited to a single volume because multiple
volumes would need to be rendered from front to back for each pixel.
We suggest to support multiple volumes by using either a spatial par-
titioning scheme [13] or depth intervals based on dynamically-linked
per-pixel lists [27]. The latter could also be used to store, sort and
composite all transparent fragments from the geometry pass. This,
however, remains future work.

6 DISCUSSION

In this section, we would like to discuss some design decisions that
may be considered controversial. Our discussion also includes some
flaws in the current software architecture that we encountered during
the implementation. We would like to reflect on them and identify
possibilities for future improvements.

The flexibility and extensibility of our system comes at a cost which
is mainly due to the memory overhead introduced by deferred shading.
In our current implementation, rendering requires many screen-size
buffers. As shown in Figure 10, even simple shading models such as
Phong shading need several buffers. The configuration in this exam-

Transform Feedback
Adaptive Pre-tesselation

Trim Data

Per-pixel Trimming

Adaptive Tesselation

Sh
ad

in
g 

M
od

el

Geometry Stage

Visibility Stage

G-Buffer

NURBS
Patch Data

Fig. 11: This Figure illustrates the implementation of the geometry
pass for trimmed NURBS surfaces. In our two-pass approach, the rou-
tines of the shading model are merged into the shaders for tessellation
and trimming using the dedicated built-in interface.



ple uses eight buffers, one of them consuming 24 bit/pixel, one of them
consuming 16 bit/pixel and six of them consuming 48 bit/pixel. At a
resolution of 1920× 1080 pixels, the overall memory allocation for
this simple shading model adds up to approximately 81 MiB (stereo
162 MiB). This reduces the amount of memory on the graphics card
that can be used by geometry or textures and significantly increases
the memory through-put per frame. As a remedy, we consider smaller-
sized buffers for different passes as proposed in the inferred lighting
approach [11]. However, an optimization step and re-usage of textures
could be a better solution to reduce the memory and bandwidth re-
quirements. As another improvement, we may introduce a dedicated
thread for scene-graph serialization and culling, which would be an
implementation of the classic app-cull-draw pattern [19].

A controversial part of guacamole’s interface is the UNIX-path-
style to access nodes. While this provides convenience for application
developers, it implies a memory overhead since a name string has to be
stored in each node. Besides string parsing and comparison is needed
to resolve node paths, which introduces computational overhead.

We introduced potential issues for the post-processing pass by us-
ing the compositing pass to blend opaque and transparent objects. In
particular, all screen-space effects which rely on the per-pixel depth
and surface normal may result in visual artifacts. This is because, so
far, the depth and normal information remains unchanged in the com-
positing pass. In order to tackle this issue, the order of compositing
and individual post-processing effects should be configurable by the
application developer. This would even allow to use the same effects
multiple times and with varying configurations.

7 CONCLUSION AND FUTURE WORK

We presented a novel software framework for real-time rendering ap-
plications. We have shown that the implementation of our multi-pass
deferred shading pipeline allows for easy extensibility. The extensibil-
ity of the different passes is demonstrated by integrating rendering sup-
port for trimmed NURBS surfaces and translucent volume data. Our
multi-stage shading model allows for flexible materials which remain
programmable in multiple stages. The development of new materials
is highly simplified by providing a graphical user interface. The inte-
gration of our rendering system into the VR-framework Avango allows
us to rapidly develop visually appealing virtual reality applications.

However, many improvements and optimizations still remain. In
particular, we seek to support order-independent transparency. There-
fore, the G-buffer could be extended with an additional texture storing
per-pixel linked lists [27] of all potentially visible transparent frag-
ments. These fragments would then be sorted, shaded and finally com-
posited with all volumes and opaque surfaces in the compositing pass.

Furthermore, we are currently working on the implementation of
new geometry types. In particular, we will add a 3D-video node
which allows for immersive telepresence applications for groups of
distributed users. The input for this node could be a real-time re-
construction from multiple depth cameras similar to that presented by
Beck et al. [4]. Finally, it is highly desirable to add level-of-detail
approaches for both polygonal meshes and point-based rendering.
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