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Figure 1: These are some image results for rendering an engine model using our pipeline. For the fully transparent engine (a),
our system performs at about 60Hz. If only some parts are transparent (b), it runs at about 180Hz. The opacity remains pro-
grammable at fragment level which enables adaptive interaction tools, e.g. virtual see-through lenses (c).

Abstract

In this paper, we present a flexible and efficient approach for the integration of order-independent transparency
into a deferred shading pipeline. The intermediate buffers for storing fragments to be shaded are extended with
a dynamic and memory-efficient storage for transparent fragments. The transparency of an object is not fixed
and remains programmable until fragment processing, which allows for the implementation of advanced materi-
als effects, interaction techniques or adaptive fade-outs. Traversing costs for shading the transparent fragments
are greatly reduced by introducing a tile-based light-culling pass. During deferred shading, opaque and trans-
parent fragments are shaded and composited in front-to-back order using the retrieved lighting information and
a physically-based shading model. In addition, we discuss various configurations of the system and further en-
hancements. Our results show that the system performs at interactive frame rates even for complex scenarios.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Picture/Image

Generation—Display Algorithms

1. Introduction

In interactive 3D applications, transparency is a highly de-
sired feature as it increases realism, spatial perception and
the degree of immersion. However, supporting transpar-
ent objects has always been a challenge in real-time ren-
dering systems. Hardware-accelerated rasterization is well-
designed for rendering opaque geometry. It adapts the Z-
buffer algorithm [Cat74], which keeps visible front-most
surfaces, but discards the hidden. For visualizing non-
opaque surfaces, a correct result is only possible if semi-
transparent surfaces are sorted and blended in either front-
to-back or back-to-front order. Presorting the geometry be-
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fore rendering is computationally expensive and results in
artifacts at triangle intersections. In contrast to geometry
presorting, order-independent transparency (OIT) refers to
a class of rendering techniques that achieve the correct re-
sult on a per-pixel basis. Most recent GPUs have gained
support for atomic gather/scatter operations. These capabil-
ities can be used to implement an A-Buffer [Car84], which
stores the fragments generated during rasterization, to en-
able order-independent transparency and a large number of
other multi-fragment effects. In particular, it has already
been used for screen-space ambient occlusion [BKB13],
depth of field [YWY10], screen-space collision detec-
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tion [JHO8], illustrative visualization for computer aided
design (CAD) applications [CFM*12], constructive solid
geometry (CSG) operations [RFV13] or nearest-neighbor
search algorithms [RBA08, BGO09].

We designed a deferred shading pipeline with support for
order-independent transparency by introducing transparency
in the material concept. In our material description, trans-
parency remains a programmable property which is either
the result of user-defined computations, a texture look-up
or simply a constant. During fragment processing, only the
transparent fragments are routed into the A-Buffer while
all other fragments are stored in a multi-layered geometry
buffer. A light-culling pass is used to determine per-pixel
lighting information. Once this information is acquired, we
shade and blend all fragments in front-to-back order. In ad-
dition to our novel pipeline concept, we compared differ-
ent state-of-the-art techniques for the generation of per-pixel
linked-lists (PPLL) to find the most efficient approach for an
A-Buffer implementation on recent graphics hardware.

Most modern rendering engines are based on deferred
shading [ST90]. Some of these engines, e.g. Unity or the Un-
real Engine 4 [Olil12], already have basic support for trans-
parent objects. However, we found that all existing systems
lack at least one of the following properties: programmabil-
ity, performance or extensibility. The main reasons for this
are the challenges to tackle when integrating an A-Buffer
into a deferred shading pipeline. Therefore, we designed a
new pipeline concept for the open-source rendering frame-
work guacamole [SLB* 14] that supports all of the aforemen-
tioned properties. The main features and contributions of our
work are:

e An integration of order-independent transparency into an
extensible deferred shading pipeline

e A programmable and easy-to-use material concept in
which the transparency can be set at fragment level

e An efficient solution for light accumulation for transpar-
ent fragments that adapts the idea of tile-based shading

e Compile-time shader optimization is used to avoid an
overhead for opaque objects

2. Background

The main challenge of integrating transparencies into a de-
ferred shading pipeline is finding an efficient combination of
two contradictory concepts of fragment processing. While
a correct blending of transparencies requires the considera-
tion of all the semi-transparent fragments per pixel, deferred
shading pipelines are designed for opaque objects because
they store only the front-most fragment for shading.

2.1. Partial Coverage and Blending

Porter and Duff [PD84] introduced compositing algebra,
which defines a set of operations on images with partial cov-

Figure 2: This Figure illustrates the correct compositing re-
sult of the surfaces A, B, C using the over-operator. It is ap-
plicable either in front-to-back (A over B) over C or back-
to-front A over (B over C) order.

erage information (alpha channel). In particular, the over-
operator is used to overlay one surface on top of the other
assuming that both surfaces are partially transparent and
no refraction is taking place when light passes through the
medium. For a foreground surface A and background surface
B, the over-operator is defined as follows:

P =pa+(1—0)pp, 6))

where p,, pp are image pixels of A and B, both pre-
multiplied by their transparency a4 and op, respectively.
The output p’ is the resulting image pixel. A pixel p is de-
fined as a quadruple (r,g,b,0) that holds three color com-
ponents and its coverage o. The compositing of multiple
surfaces is accomplished iteratively. However, the over-
operator is not commutative. The transparent surfaces must
be ordered either front-to-back or back-to-front to obtain the
correct result, as shown in Figure 2.

2.2. Deferred Shading

In forward rendering, every fragment passing the depth test
is shaded and stored in the frame buffer until it is replaced by
anew fragment passing the depth test. For scenes with many
lights and sophisticated shading, this approach may become
inefficient because it needs to perform expensive shading
computations for occluded fragments also. In deferred shad-
ing, geometry and light processing are decoupled [ST90].

In the first step, scene geometry is rendered without per-
forming any shading computations. Instead, the data neces-
sary for shading is gathered and stored in a so-called geom-
etry buffer (G-buffer). In the second step, only the visible
fragments stored in the G-buffer are shaded, which avoids
wasting resources for occluded fragments. For scenes with
many lights, it can also be advantageous to accumulate the
light contributions in a separate pass, a technique also re-
ferred to as deferred lighting [AMHHOS].

Unfortunately, standard deferred shading does not con-
sider transparency effects. However, we do not want to reject
the deferred approach as it performs very well for opaque
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geometry, which is probably dominant in most scenes. In-
stead, we want to find a way to combine them both, thereby
benefiting from efficient rendering of opaque geometry and
realistic transparency effects.

2.3. Transparency Effects in Real-time Rendering

The non-commutativity of Equation 1 used for compositing
requires the surfaces to be sorted in either front-to-back or
back-to-front order. For rasterization-based pipelines, this
presents a major challenge because triangles are handled
independently, disregarding their distance and orientation
to the viewport. According to [MCTBI11], the methods
of sorting can be classified into the following categories:
Depth-sorting independent, probabilistic approaches, geom-
etry sorting and fragment sorting.

Sorting-independent techniques [MB13, BMOS8] approx-
imate the compositing result without explicit ordering by
depth. They can be performed in a single pass and do not
need any buffer to store fragments. Despite their simplic-
ity and high performance, these techniques do not guarantee
the correct compositing of semi-transparent surfaces and in
most cases, they produce visual artifacts. Therefore, their us-
age is limited to simple cases where quality is less important
than performance. As a remedy, Maule et al. propose a hy-
brid approach [MCTB13] which performs fragment-sorting
and correct compositing only for the front-most fragments,
thereby balancing image quality, memory consumption and
performance.

Stochastic transparency [ESSL11] is an example of the
probabilistic approach. In their work, transparency effects
are achieved by filling a multi-sampled texture by evaluating
alpha-to-coverage probability based on a random sub-pixel
stipple pattern. However, this technique suffers from severe
noise if not enough samples are generated.

Geometry-sorting approaches explicitly sort all primitives
by depth before drawing. Potential artifacts due to inter-
penetrating triangles or cyclic overlaps can be resolved by
splitting the corresponding triangles. In most cases, how-
ever, sorting at the primitive level is too expensive. There-
fore, some systems accept visual artifacts and use a coarse
object-based depth-sorting instead.

In contrast to geometry sorting, fragment-sorting tech-
niques work at lower granularity. After rasterization, the
fragments are stored and sorted per pixel such that primi-
tive presorting is not required. Early implementations such
as depth-peeling [Eve01] did not scale well with an increas-
ing amount of geometry. However, recent hardware advance-
ments enable various approaches [YHGT10] [LHL14] [J 14]
for an efficient A-Buffer implementation. We compared ex-
isting techniques (see Section 5) in order to find the most
efficient approach on the latest hardware and redesigned the
rendering pipeline of guacamole [SLB™ 14] to support order-
independent transparency.
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Figure 3: Rendering is accomplished by a configurable
multi-pass pipeline based on deferred shading. In the first
pass, the geometry descriptions are rendered into the G- and
A-Buffer using the corresponding renderers. A shared shader
interface and meta-programming methods are used to insert
the material-dependent shader code which makes the system
extensible for different geometry descriptions.

3. System Overview

Guacamole is an extensible, lightweight open-source scene
graph and rendering engine based on deferred shading. Our
redesigned pipeline concept presented in this paper does not
depend on this specific framework, but should be applicable
to any other deferred shading pipeline, as well. However, we
will use our integrated system design to describe and discuss
the general ideas of our approach.

Figure 3 illustrates our novel rendering concept in
guacamole. In contrast to the originally proposed de-
sign [SLB*14], we employ a fixed G-buffer layout and
physically-based rendering [KG13] for shading. It is based
on a configurable multi-pass pipeline in which the user can
define passes and their processing order. The minimal set of
pipeline passes required to render a scene consists of the fol-
lowing three steps:

o Geometry Pass: This pass is responsible for the rasteri-
zation of the geometry descriptions in the scene. For all
polygonal objects, a standard renderer is provided. In ad-
dition, the system can easily be extended with any kind of
geometric representation and the corresponding rendering
algorithm. This includes multi-pass techniques, as well as
ray-casting based rendering approaches. This extensibil-
ity is demonstrated by the current support for trimmed
NURBS [SF09], level-of-detail point clouds and 3D video
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avatars [BKKF13]. During fragment processing, each ren-
derer passes the information necessary to defer shading to
a shared shader interface which is independent of the type
of geometry. The material computations are then applied
to the fragment. Transparent fragments are submitted into
an A-Buffer and, respectively, all opaque fragments into
the G-buffer, as described in Section 4.1.

e Light-Culling Pass: Lighting information is necessary to
shade the fragments gathered in the intermediate buffers.
In this pass, light proxy geometries are rendered into a
low-resolution grid. The result is a list of active lights
for each grid cell. This idea adapts from tile-based shad-
ing [OA11], which was originally proposed for the effi-
cient handling of a large number of light sources. In the
context of OIT, we exploit the generated light grid to avoid
frequent traversal of the fragments stored in the interme-
diate buffers. A detailed description of the light-culling
pass is given in Section 4.3.

o Shade-Compositing Pass: Once the fragment and light-
ing information is gathered, shading and compositing is
performed. For each pixel, we retrieve the list of active
lights from the light grid and start traversing the fragments
stored in the A- and G-Buffer. In front-to-back order, the
fragments are shaded and blended using Equation 1 un-
til the pixel’s alpha value reaches a desired threshold. For
details, see Section 4.4.

After the shade-compositing pass, the shaded image can
be processed by additional screen-space passes. However, in
this paper we do not elaborate on the possibilities of post-
processing effects.

4. System Design and Pass Descriptions

In our system, rendering a given scene is accomplished by a
pipeline. The resulting image can be used as input to another
pipeline, which allows for multi-pass rendering. A pipeline
is configured by the user by defining a set of passes and their
order of execution. Some passes, such as post-processing,
are optional, but the geometry pass, the light-culling pass
and the shade-compositing pass, as well as their processing
order, are compulsory. After culling and serialization, ren-
dering is initiated by passing the scene objects to the geom-

etry pass.

4.1. Geometry Pass

All renderable objects consist of a geometric description and
a material. A material is programmable and consists of user-
defined input and the corresponding shader code. Using a
shared shader interface for all geometry representations al-
lows us to insert the material-dependent source code into the
geometry-specific programs at shader-compile time. During
fragment processing, the inserted material methods may ma-
nipulate the transparency. Opaque fragments are then passed
to the G-buffer, while transparent fragments are inserted into
an A-buffer.

source" :
void pbr_lens_fade_out ()

{
set materia sefficients initial alpha

gua_roughness = texture (roughtex, gua_texcoords).r;
gua_alpha = texture (alphatex, gua_texcoords).r;

float lens_dist = length(lens_pos - gua_position.xy);
float lens_fade_out = lens_dist / lens_rad;
gua_alpha *= clamp (lens_fade_out, 0.0, 1.0);

float ndepth = gl_FragCoord.z / gl_FragCoord.w;

float depth_fade_out = ndepth / fade_dst;

gua_alpha %= smoothstep (0.0, 1.0, depth_fade_out);
}

bl

Figure 4: In a material description, the built-in variable
gua_alpha can be used to set the transparency. In this exam-
ple, in the visibility stage, the transparency is first initialized
using a texture and then increased if the fragment is either
close to the near plane or inside the radius of a virtual see-
through lens.

4.1.1. Material Description

In our system, a material is an instance of a material descrip-
tion which consists of a set of user-defined input parameters
and the corresponding shader code that performs the desired
computations. A material description may provide methods
for two stages: displacement and visibility. In the displace-
ment stage, all material effects are applied that operate on
vertex level, e.g. displacement mapping. The visibility stage
operates per fragment and may modify all shading relevant
parameters such as normal or albedo, as well as the trans-
parency.

In contrast to other systems, the differentiation between
opaque and transparent is carried out at fragment level, not
per object. This is quite advantageous, especially if the opac-
ity does not depend on the objects themselves, but on the cur-
rent view or other parameters. For example, in many virtual-
reality applications, it is desirable to fade out objects close
to the viewer because the stereoscopic perception becomes
uncomfortable. Figure 4 shows an example of a material de-
scription in our system. In this material, the transparency of
a fragment depends on multiple parameters: an alpha tex-
ture, a virtual see-through lens (as shown in Figure 1c) and
the distance to the viewer.

(© 2015 The Author(s)
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@define_fragment_shader_interface@

@define_material_uniforms@
@define_material_methods@

void main () {
@map_rasterization_output@

perform_ray_casting();
@invoke_material_methods@

@submit_fragment@ // to G- or A-buffer (see Fig. 5)

}

void submit_fragment () {
manual_depth_test(); // discard hidden fragr

if (gua_alpha < 1.0) {
if (gua_write_to_A_buffer()) {
discard; // success, fragmen

} else {

/7 ilure, saturation
gua_write_to_G_buffer();
}
} else {
gua_write_to_G_buffer(); // write op

}

Figure 5: This simplified pseudo-code example illustrates a
fragment program for a ray-casting based renderer in our
system. The placeholders in between @ are replaced by the
corresponding source code before shader compilation. Af-
ter ray casting, the material is applied and the fragment is
submitted into the corresponding buffer.

4.1.2. Shared Shader Interface

Non-trivial geometry descriptions typically require sophis-
ticated rendering algorithms, e.g. ray casting or multi-pass
approaches. In most cases, this involves designated shader
programs. However, the rendering technique itself should
be independent of the applied material. A decoupling be-
tween rendering algorithm and material computations could
be achieved by a two-pass solution using an additional set
of off-screen render targets as an intermediate result. How-
ever, this would increase the bandwidth requirements con-
siderably and the support for transparencies would magnify
this overhead. Instead, we provide a generic interface which
helps us to merge the shader code of the geometry and the
material description using meta-programming techniques.

Figure 5 shows a pseudo-code example of the fragment
stage of a geometry program used in our system. The shared
interface consists of placeholders which are replaced before
shader compilation with the corresponding definitions or in-
vocations. Based on this interface, all geometry and material
computations are performed in a single program. The mate-
rial may modify all shading-relevant data (position, normal,
alpha, albedo, etc.) or even discard the fragment before it is
stored in one of the intermediate buffers.

4.2. A-buffer Generation

The A-buffer is implemented using the lock-free insertion
sort with early termination, as described in [LHL14]. In
our performance experiments, we compared this approach
to other techniques and it shows the best results (see Sec-
tion 5) on most recent hardware. More importantly, it does
not require a separate sorting pass because the fragments
are sorted during insertion. This has two major advantages.
First, it reduces the heavy workload and register-usage of the
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Figure 6: This Figure illustrates the submission of a frag-
ment. If saturation is reached, the depth is written to the G-
buffer to enable manual Z-culling for further fragments.

compositing pass which already performs all shading and
blending computations. Secondly, it enables early termina-
tion based on the accumulated opacity of the pixel.

In the presence of non-opaque objects, the geometry pass
decides in which buffer a fragment is stored, depending on
its final alpha value. In general, a fragment with an opacity
of less than 100 % is inserted into the A-buffer and then dis-
carded. Otherwise, it is written to the G-buffer, as illustrated
in Figure 6.

Utilizing the meta-programming capability of guacamole
allows the user to manipulate the opacity value at fragment
level. This gives a maximum flexibility in managing object
transparency, which is especially useful for the implementa-
tion of sophisticated interaction techniques such as show-
through techniques in co-located collaborative virtual en-
vironments [AKK*11] or group navigation with fading-out
obstacles [KKB*11]. Furthermore, it enables advanced ma-
terials with a view-dependent transparency, e.g. based on the
Fresnel factor. At the same time, it maintains high perfor-
mance because all opaque fragments are routed into the G-
buffer. Moreover, for materials that do not manipulate the
alpha value, the shader optimization will automatically re-
move the entire A-buffer decision path.

In contrast to the original lock-free insertion [LHL14],
we employ two enhancements to improve performance and
memory usage. We will elaborate on these improvements in
the following paragraphs.

For all potentially transparent materials, the opacity might
depend on external information, for example, originating
from some input parameter or a texture. This information
is not known at shader compile-time and might also vary
at run-time. As a consequence, the graphics driver makes
some assumptions about shader execution, e. g. register us-
age or enabling/disabling rasterization optimizations. In par-
ticular, write operations to global GPU memory in a frag-
ment shader disable the hardware’s early-Z test. This be-
havior is caused solely by the presence of these operations
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in the shader assembly, even if they are never called. The
early-Z test could be explicitly enforced. In this case, all
per-fragment tests (depth, stencil, occlusion queries) would
be performed not after, but prior to fragment-shader execu-
tion, and the corresponding buffers would be updated ac-
cordingly. However, this is not applicable for our approach
as the geometry pass uses discard operations to prevent writ-
ing transparent fragments to the G-buffer. Thus, performing
the depth test for those fragments before shader execution
would corrupt the depth buffer. However, an early termina-
tion of occluded fragments is highly desirable. Therefore, we
bind the current depth buffer and perform manual conserva-
tive Z-culling. Our results, which are presented in Section 5,
show that this workaround is quite effective in rejecting oc-
cluded fragments.

Furthermore, the lock-free insertion is capable of discard-
ing fragments that are considered almost hidden. For each
pixel, the algorithm stores a depth-sorted list of fragments.
While inserting a new fragment, the list needs to be traversed
to find the correct place of insertion. During this traversal,
the resulting opacity is accumulated and if it exceeds a pre-
defined threshold, the current, as well as all further frag-
ments, are considered hidden. We modified the algorithm in
such a way that, if it fails to insert a fragment due to its accu-
mulated opacity, instead of just discarding, it is written to the
depth buffer, as indicated in Figure 6. As a result, newly gen-
erated fragments are culled by our manual Z-culling prior to
the insertion if they fall behind the current depth. This also
prevents memory allocation for those fragments and thereby
decreases the algorithm’s memory footprint.

4.3. Light-Culling Pass

Once the geometry is rasterized into the G- and A-buffer,
we need to gather light information in order to shade the
fragments. A straightforward implementation on top of the
deferred shading pipeline may be inefficient in terms of scal-
ability with an increasing number of light sources. The rea-
son is that, for light accumulation, the proxy geometries of
the light sources are rasterized, and for each affected pixel
the lighting contribution is typically accumulated in the G-
buffer. This is sufficient for conventional deferred shading,
but inefficient for transparent fragments as they are stored in
per-pixel linked lists and their frequent traversal would cause
many un-coalesced memory accesses.

In order to resolve this issue, we exploit the idea of de-
ferred tile-based shading [OA11]. In this approach, the non-
relevant light sources are culled per pixel or, respectively, per
screen-space tile in a separate pass. Thus, lighting computa-
tions are deferred to the shading pass. Therefore, the frame
buffer is covered with a screen-space grid (light grid) with a
fixed tile size (see Figure 7a). Then the lights whose volumes
intersect the tile’s frustum are stored within a tile. Subse-
quently, every pixel is shaded for all lights assigned to the
corresponding tile. While the tile-based shading approach
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Figure 7: The light grid is populated by rendering the light
proxies (a) into a multi-layered texture (c) in which each bit
corresponds to a light. The mapping is stored in a bit-field
light map (b).

was initially designed for shading opaque data, it is also
quite beneficial for the transparent fragments stored in the A-
buffer. It resolves the aforementioned inefficiencies during
light accumulation. In the compositing pass, the correspond-
ing per-pixel linked lists are only traversed once, performing
fragment shading and compositing on-the-fly.

There are various ways to generate the light grid. In our
system, the grid is represented by a multi-layered 2D tex-
ture in which the two-dimensional coordinates address grid
cells. Each texture layer corresponds to a bit field, as shown
in Figure 7b. If a bit is set, the corresponding light has a
contribution to at least one of the tile’s fragments. There-
fore, each texture stores the information for up to 32 lights,
as shown in Figure 7c. If the number of lights is higher than
32, multiple texture layers are used. However, of course, not
all scene lights, but only those visible for the current view,
are enumerated in the bit field.

The grid is populated by rasterizing the light volumes and
setting the corresponding bit for each light fragment using
the atomic OR-operation. The resolution of the viewport is
set to the grid resolution, so tile dimensions become equal
to one pixel. However, traditional rasterization evaluates the
coverage only at the pixel center. We ensure proper light as-
signments by enabling conservative rasterization. This type
of rasterization generates fragments for every pixel if it at
least partially overlapped by a primitive. For hardware which
does not support this extension, there are fallback solu-
tions based on either geometry shaders [HAMOOS], multi-
sampling or full-screen rendering, as illustrated in Figure 8.

4.4. Shade-Compositing Pass

In this full-screen pass, the fragments stored in the G-buffer
and the A-buffer are shaded and blended into the final im-
age. Compositing is performed from front-to-back by iterat-
ing the A-buffer and accumulating the pixel’s color. We con-
tinue until the the depth of the current fragment is greater
than the depth stored in the G-buffer or there are no more
transparent fragments left to shade. After that, the current
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(a) (b) (©) ()

Figure 8: In contrast to traditional rasterization (a), conser-
vative rasterization (b) generates fragments also for partially
covered tiles. If this feature is not available, either multisam-
pling (c) or fullscreen (d) fallbacks may be used.

pixel color can be blended with the shaded result of the G-
buffer content.

Since tile-based shading is used, each fragment needs to
be shaded for all light sources affecting the corresponding
tile. For that, we loop over all bits in the tile’s bit field
and perform shading only for those lights whose bit is set.
This procedure is identical for both G-buffer and A-buffer
fragments. This way of shading has the following advan-
tages. The data necessary to shade a fragment is loaded only
once. Common terms in the rendering equation can be fac-
tored out which is beneficial as we employ a computation-
ally expensive physically-based shading approach [KG13].
Furthermore, fragments within the same tile have coalesced
access to light information.

4.5. Post-processing Pass

After shading and compositing, additional screen-space ef-
fects are applied to the shaded image through a set of op-
tional post-processing passes. Their configuration and order
of execution is defined by the programmer. They have access
to all intermediate buffers (light grid, G-buffer and A-buffer)
which enables a variety of sophisticated rendering effects.

5. Results and Discussion

All tests were performed on a 3.33 GHz Intel Core i7 work-
station with 12GiB RAM equipped with a single NVIDIA
GeForce GTX 980 GPU with 4GiB video memory and us-
ing a rendering resolution of 1024x1024.

For the implementation of the A-buffer, we considered
various PPLL techniques. In general, all methods capable
of gathering incoming fragments could be used. However,
the choice of algorithm affects the pipeline design, as well
as the possibilities for optimizations. In particular, early-
termination based on the pixel’s saturation is only possible
for approaches which sort the fragments on-the-fly. We refer
to these approaches as pre-sort techniques, while we refer
to approaches with a separate sorting pass as post-sort. Fur-
thermore, some methods benefit from recent hardware ad-
vancements more than others. Therefore, we compared var-
ious state-of-the-art PPLL-implementations in order to find
the best choice on the most recent graphics hardware. Our

(© 2015 The Author(s)
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comparison includes three base techniques and four varia-
tions of them:

e PreSortLF — A lock-free insertion sort based on 64-bit
atomic operations [LHL14].

o PreSortLF* — PreSortLF with early termination.

o PreSortLFMerge2* — Similar to PreSortLF*, but using
two PPLLs to reduce insertion costs. The two lists are
merged during compositing.

e PreSortCS — An insertion sort using a critical section,
similar to [VF14].

o PreSortCS* — PreSortCS with early termination.

e PostSort — A PPLL-implementation as described by Yang
et al. [YHGT10]. After gathering, insertion sort is per-
formed in fixed-sized local arrays.

o PostMergel6 — Similar to PostSort, but not limited by
a fixed-sized array. Instead, it performs multi-way merge
sort [KLZ13] with a chunk size of 16.

In order to evaluate the performance of each PPLL tech-
nique, the following three scenes have been used: the Drag-
ons, the Atrium Sponza, and the Hairball. Figure 9 shows the
views and the corresponding complexity of our test scenes.
In the applied material description, a constant opacity value
of 50 % was set for all fragments while the saturation thresh-
old was set to 98 %. However, a direct comparison of the tim-
ings of the subtasks is not possible because, in some cases,
they are inseparable. Nevertheless, we measured the timings
for the two major stages. For pre-sort techniques, the 1st
stage contains the gathering and sorting of fragments while
the 2nd stage performs shading and blending. For post-sort
techniques, the 1st stage simply gathers while the 2nd stage
sorts, shades and blends the fragments. The performance re-
sults are summarized in Table 1.

The results show that pre-sorting based on lock-free inser-
tion and early termination performs best for all our scenes.
The performance of post-sorting techniques suffers from
the lack of early termination. In addition, we noticed that
all lock-free approaches benefit from the highly improved
support for atomic operations of most recent hardware. On
previous hardware generations, we found the results were
mixed and different approaches performed best depending
on the scene’s complexity.

Nevertheless, there are some limitations in our system.
The memory requirements and the rendering performance
are both affected by the order of geometry submission, the
window resolution and applied material descriptions.

The memory budget reserved for storing non-opaque frag-
ments needs to be set in advance because there is no dynamic
memory allocation in shader programs. This is not a spe-
cific limitation of our system, but common to all PPLL im-
plementations. In particular, the minimum storage require-
ments for the lock-free insertion [LHL14] consist of the pre-
allocation of all head pointers and the storage for the re-
spective fragment information. This represents a space-time
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Figure 9: Depth complexity heat-maps of the three scenes: the Dragons scene, the Atrium Sponza, and the Hairball. The bar on
the right shows the colors associated with the number of fragments per pixel.

Table 1: Rendering time in milliseconds for the A-buffer techniques.

Scene Dragons Sponza, view 1 Sponza, view 2 Hairball, view 1 Hairball, view 2
Fragments 1772682 7940179 7964 342 15398997 70591231

Stage Ist 2nd total 1st 2nd total 1st 2nd total Ist 2nd total Ist 2nd total
PreSortLF 25 038 3.3 53 14 6.7 6.3 1.3 7.6 87.9 120  99.9 555.5 1.5 557.0
PreSortLF* 23 07 3.0 52 14 6.6 52 1.3 6.5 24.2 154 39.6 56.2 1.7 58.0
PreSortLFMerge2* 2.5 0.8 3.3 57 15 7.3 6.1 14 7.5 39.2 18.1 57.3 106.2 2.0 108.2
PreSortCS 56 09 6.6 126 34 160 219 2.8 247 213.8 172 231.0 10304 24 1032.7
PreSortCS* 56 09 6.5 121 32 153 127 29 156 29.7 124 422 71.0 2.2 73.3
PostSort 38 20 58 120 7.0 19.0 121 157 278 252 1396 164.8 107.6  672.7 780.4
PostMergel6 38 14 52 120 56 17.6 12.1 73 194 25.2 65.1 90.2 107.6 3122  419.8

tradeoff, but it also implies an overhead if there are no trans-
parencies present. The necessary memory mainly depends
on the amount of transparencies in the scene, the window
resolution and the data stored for each fragment. For exam-
ple, in our system, 48 bytes are stored for each fragment and
8 bytes are used for each head pointer which results in a min-
imum budget of about 60MB for a resolution of 1024x1024.
In our tests, we set the budget to 1GB which was sufficient
for all our models and allows us to store an average number
of 18 transparent fragments per-pixel. However, higher res-
olutions and depth complexities may require more memory.
If the reserved budget is not sufficient, artifacts may occur.
Therefore, an adaptive memory management is highly desir-
able, but remains for future consideration.

In our system, occluded fragments can be discarded based
on their depth or the pixel’s accumulated saturation. How-
ever, the efficiency of this optimization directly depends on
the order of incoming fragments. If the scene is rendered
back-to-front, all fragments are inserted at the head of the
PPLL. The insertion at the head of the list is efficient, but it
does not allow for an early discard of occluded fragments.
In this case, the storage requirements are higher compared
to front-to-back rendering.

In addition, the processing of occluded fragments de-
creases rendering performance. Figure 10 shows our test
results for analyzing this effect. In this example, semi-
transparent full-screen planes are rendered in ascending
depth order and vice versa. For a low depth complexity of

less than 5 fragments per pixel, both approaches perform al-
most equally. For higher depth complexity, the draw times
for front-to-back rendering increase almost quadratically be-
cause the insertion of a fragment requires traversing the list
of all fragments gathered for this pixel. However, once the
pixel’s opacity is saturated, the depth is written to the G-
buffer and all further fragments can be discarded. In con-
trast, the draw times for rendering back-to-front increase lin-
early, but no discarding is possible. Consequently, the re-
quired memory budget and the performance of our current
implementation does not only depend on the current view
and the object’s materials, but also on the order of geometry
submission. As a remedy, insertion costs for front-to-back
rendering could be reduced by adapting the lock-free inser-
tion sort.

Furthermore, we measured the performance overhead if
no transparent objects were in the scene. In a first test, we
analyzed the material descriptions to disable the A-buffer
initialization and to simplify the shade-compositing pass if
all materials were opaque. In addition, the A-buffer insertion
code was automatically removed by the shader optimization.
As a result, there was no performance overhead at all. How-
ever, for some materials, the transparency calculations may
also result in opaque fragments. Therefore, we performed a
second test in which the shader optimization was avoided
by explicitly setting the opacity to 100 % via input parame-
ter. The measured draw times indicate that the performance
drops about by 4 %. This overhead is caused by the buffer
initialization and the check for transparent fragments during
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Figure 10: This Figure shows the draw times for render-
ing semi-transparent full-screen planes in different order of
submission. For both tests, the pixel’s saturation threshold
was set to 99%. In back-to-front order (blue), draw times
increase almost linearly because the fragments are inserted
efficiently at the front of the A-buffer. In contrast, inser-
tion costs for rendering front-to-back (orange) first increase
almost quadratically but, if saturation is reached, all fur-
ther fragments can be discarded. For higher opacity (b), this
threshold is reached earlier than for lower opacity (a).

compositing. This constant overhead only depends on the
viewport resolution, not the geometry or depth complexity.

In our system, anti-aliasing is achieved as a post-process
using FXAA [CR12] which has no additional memory re-
quirements and a very low performance overhead. If a higher
visual quality is desired, multisampling with a correspond-
ing G-buffer could also be considered. In addition, the A-
buffer would need to be extended with a 4-byte sample mask
for each transparent fragment, which would increase the
memory requirements by about 10%. During compositing,
all fragments would need to be blended based on their trans-
parency and corresponding sample mask.

6. Conclusion and Future Work

In this paper, we presented an efficient integration of order-
independent transparency into a programmable deferred
shading pipeline. Our pipeline concept is easily extensible

(© 2015 The Author(s)
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in terms of additional passes, geometry representations and
user-defined materials. Transparency is a property of our ma-
terial description which is programmable at vertex and frag-
ment level, thereby, giving the user maximum flexibility to
manipulate the opacity values on a per-fragment basis. The
material description and the designated shader programs for
different geometry representations are merged using meta-
programming techniques. During rendering, only the trans-
parent fragments are routed into the A-buffer, which is based
on lock-free insertion. All opaque fragments are submit-
ted to the G-buffer. The light information is gathered in a
multi-texture bit-field. Gathering this information in a sepa-
rate pass allows for an efficient shading and blending of all
transparent and opaque fragments.

In addition, we evaluated and compared various state-of-
the-art A-buffer implementations to find the most efficient
on latest graphics hardware. Based on the results, we re-
designed the deferred shading pipeline of the open-source
rendering framework guacamole to add support for order-
independent transparency. The flexibility of programmable
opacity increases the realism and also improves usability
and spatial perception by enabling adaptive fade-outs or
see-through lenses. The overhead of our system is output-
sensitive and minimal if only opaque objects are present.

For future work, we plan to improve the dependency be-
tween rendering performance and order of geometry sub-
mission. By extending the pre-sorting implementation with
back-pointer semantics, we could greatly reduce insertion
costs for front-to-back rendering without losing the ben-
efit of early termination. Furthermore, the proposed light
culling approach has some limitations concerning how lights
are assigned to a tile. The tile frustum intersection test is
achieved implicitly by rasterization, which might create a
bottleneck in the scenes with very large number of lights.
Therefore, we would like to investigate depth-aware meth-
ods suggested in [Har12,0BA12] for use in conjunction with
order-independent transparency.
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