Spatiotemporal LOD-Blending for Artifact Reduction
in Multi-Resolution Volume Rendering

Sebastian Thiele*

Carl-Feofan Matthes’

Bernd Froehlich®

Virtual Reality and Visualization Research Group
Bauhaus-Universitat Weimar

ABSTRACT

High-quality raycasting of multi-resolution volumetric datasets
benefits from a well-informed working set selection that accounts
for occlusions as well as output sensitivity. In this work, we suggest
a feedback mechanism that provides a fine-grained level-of-detail
selection for restricted working sets. To mitigate multi-resolution
artifacts, our rendering solution combines spatial and temporal
level-of-detail blending to provide smooth transitions between ad-
jacent bricks of differing levels of detail and during working set
adjustments. We also show how the sampling along rays needs
to be adapted to produce a consistent result. Our implementation
demonstrates that our spatiotemporal blending in combination with
consistent sampling significantly reduces visual artifacts.

1 INTRODUCTION

The visualization of massive models exceeding the size of inter-
nal memories requires out-of-core multi-resolution rendering algo-
rithms, designed to effectively reduce the amount of data loaded and
considered during rendering [7]. However, out-of-core rendering
systems frequently compromise the visual quality of the rendering
result [3].

We present a set of novel methods developed for high-quality
ray-guided real-time out-of-core visualization of large volumetric
data sets. Disturbing popping artifacts during working set changes
and salient discontinuities at brick boundaries are mitigated by a
spatiotemporal interpolation scheme, which combines trilinear in-
terpolation with spatial and temporal level-of-detail blending. Since
our blending approach requires a restricted working set, we add two
conditions for split and collapse operations during level-of-detail
selection. Frequently, ray-guided feedback mechanisms are em-
ployed to inform the working set selection process and optimize
resource utilization [4, 6]. During raycasting, we accumulate feed-
back information for visible bricks of the working set and derive
priorities to inform our level-of-detail selection scheme.

Our main contributions are:

e an efficient blending approach that combines spatial and tem-
poral level-of-detail blending to overcome the most salient
multi-resolution artifacts,

e aconsistent adaptive sampling technique that avoids oversam-
pling as well as abrupt changes of the sampling stepsize, and

e alow-overhead level-of-detail feedback mechanism and an ef-
ficient priority distribution scheme to guide the working set
selection process.

*e-mail: sebastian.thiele @uni-weimar.de
fe-mail: carl-feofan.matthes @uni-weimar.de
*e-mail: bernd.froehlich@uni-weimar.de

We integrated all proposed techniques into a multi-resolution vol-
ume raycasting framework and demonstrate the improved rendering
quality of our approach.

2 RELATED WORK

Multi-resolution volume rendering is a well-researched field and in
this paper we limit our discussion to the work most closely related
to our contributions. Beyer et al. [1] provide an overview of state-
of-the-art volume rendering.

Multi-resolution approaches for the visualization of large volu-
metric datasets display the volume at locally varying levels of detail
(LOD) and employ an octree representation of the dataset to store
the working set in a texture atlas [7, 4, 5]. The working set is the
result of a level-of-detail selection process and constitutes the set
of bricks available durin% rendering. A brick consists of a fixed
number of voxels (e.g. 64°) and serves as the paging unit. The leaf-
level of the working set is also referred to as the cutz. Commonly,
view-dependent LOD cut updates are incrementally performed us-
ing a greedy-style split-and-collapse algorithm similar to [2], max-
imizing the data reuse by exploiting frame-to-frame coherence. In
our work, the working set is restricted by adjacency relationships
between bricks and we demonstrate how two conceptually simple
conditions suffice to maintain a restricted working set on a frame-
to-frame basis.

Ideally, a feedback mechanism is used to gather information
about required data bricks directly during rendering. This is central
to the output sensitivity of the system and greatly facilitates a re-
striction of the working set to the bricks actually visible. Crassin et
al. [4] use render targets to keep track of brick utilization and store
a single bit to indicate whether a given brick should be split. Had-
wiger et al. [8] store feedback information in form of cache misses
and usage statistics atomically in a set of feedback-tiles shared with
other rays through screen-space partitioning directly during render-
ing. Fogal et al. [6] implement a lock-free set datastructure to store
cache misses. However, the feedback generated in previous sys-
tems is limited to binary information about whether bricks should
be split or collapsed and does not involve per-brick priorities gath-
ered during sampling. To provide a fine-grained prioritization dur-
ing working set selection, we store level-of-detail differences in our
feedback table and provide a priority distribution algorithm con-
necting the feedback mechanism with a split-and-collapse working
set selection strategy.

There are a number of artifacts commonly arising in multi-
resolution volume raycasting systems. Carmona et al. [3] observe
that visible boundary artifacts between bricks of differing levels
of detail can be reduced through spatial level-of-detail blending
with the parent brick towards boundaries of coarser neighboring
bricks. Ljung et al. [9] interpolate boundary voxels between ad-
jacent bricks, leaving the boundary discontinuity between bricks
quite noticeable. Furthermore, frame-to-frame working set adjust-
ments in out-of-core scenarios often cause popping artifacts dur-
ing split and collapse operations. We introduce a novel spatiotem-
poral level-of-detail blending algorithm by generalizing the work
of Carmona et al. [3], who employ a binary weight at each ver-

GPU

Brick Atlas

LOD-Octrees Render

Feedback Table

Node ID:
Tlol]2sfa]s]e]7]e]0]
Maximum Level-of -Detail Difference:

B o] [ToT T 11

pz e

4 I
L 1 —
| * Storage
m Working Set | Resolve Priority
nﬁ: .« e [Update Restriction Distribution Network
.
d
o
Brick Cache W
CPU

Figure 1: This Figure depicts a high-level overview of our system. Each time a ray begins sampling a brick during rendering, the difference
between the ideal level of detail at the sampling position and the level of detail actually available is stored in a feedback table. Next, we distribute
derived priorities for the entire working set from the subset of bricks for which the priority was obtained through the feedback mechanism.
During the resolve restriction step, we guarantee a restricted working set every frame and implement the adjacency constraint through forced
split-operations. The actual working set update controls asynchronous data-delivery from external storage.

tex. In this work, we introduce continuous spatiotemporal weights
which are updated on a frame-to-frame basis to provide for both
animated transitions during working-set changes and gradual tran-
sitions across adjacent bricks of differing LODs.

Commonly, the sampling density is adapted to match the brick
resolution, e.g. [7]. However, in order to obtain a consistent ren-
dering result in our approach, we incorporate additional considera-
tions into the computation of the sampling density such as spatial
and temporal blending as well as the ideal level-of-detail.

3 DIRECT LEVEL-OF-DETAIL FEEDBACK

Performance and resource utilization benefit from a well-informed
LOD selection that accounts for occlusions and output sensitivity.
Volume rendering techniques that incorporate per-brick information
gathered during sampling to drive the LOD selection process are
referred to as ray-guided [6].

Our out-of-core multi-resolution volume rendering frame-
work [11] is able to interactively handle massive volumetric
datasets in the terabyte range. Figure 1 illustrates our basic sys-
tem architecture. Similar to [7], our out-of-core data management
system is based on a two-level cache hierarchy and consists of three
main components: The brick cache, the brick atlas and the level-of-
detail feedback mechanism.

3.1 Feedback Table

During rendering, we populate a feedback table of brick usage
statistics that is shared across all rays and transferred from graph-
ics memory to main memory in order to guide our LOD selection
process. Before rendering, we reserve a feedback entry for each
brick present in the working set. In order to converge on the best
possible working set for rendering, we store the maximum level-
of-detail difference required by all rays that sample a brick in the
feedback table. Similar to [8], we index the location of feedback
information based on the corresponding brick id which allows for
direct feedback accumulation without an additional histogram com-
paction step.

We initialize all entries in our feedback table P with —eo. When-
ever a ray begins sampling a brick, we atomically store the maxi-
mum of all differences of the depth of brick N to the optimal LOD

at the given sampling position in the feedback table:
Py = max {LODactual(NaR) —LODjgeal (NvR) | Re %} ()

where Z is the set of rays that sample brick N. We also keep a
record of the number of rays that have sampled each brick to aug-
ment our working set selection prioritization.

We opt to serialize the layout of our level-of-detail octree in
graphics memory instead of using an index texture, because at ray-
casting time we stop traversing the working set as soon as the ideal
level-of-detail is reached. This guarantees that we never oversam-
ple bricks and our restricted working set does not cause overdraw.
In order to ensure availability of data from ancestors of any brick
selected for rendering, all ancestors of bricks present in the cut are
kept in the atlas texture in graphics memory and are part of the
working set. This approach allows for sampling of inner bricks of
the working set as well as immediate collapses during the cut up-
date.

3.2 Feedback-guided LOD Selection

Given the most recent feedback table downloaded to main memory,
we initiate our LOD selection scheme by performing a sweep over
the working set. Over the course of this traversal, we compute de-
rived priorities for all nodes in the working set from the subset of
known priorities contained in the feedback table.

First, we obtain priority Py corresponding to node N from
the feedback table. We define Py to be the maximum of
LOD 4¢1ya1(N,R) — LOD;geq (N, R) for all rays R that sample brick
N (Section 3.1). Note that Py is positive for nodes that are too
coarse and zero if the LOD of N is ideal. If there is no priority for
node N available in the feedback table, then Py = —oo. Next, we
traverse the entire working set top-down breadth-first and propagate
priorities from the feedback table (cmp. algorithm in Algorithm 1).
During the bottom-up traversal, we store the corresponding value
of Py of each node N.

After the priority distribution, the priority P4 for any given node
A is larger than Py for ancestors of N, and smaller than Py for de-
scendants of N (Figure 2). Over the course of the LOD selection
process, nodes in the leaf level of the working set for which Py < 0
are queued for collapse because their LOD is considered too fine by
all rays. In contrast, any nodes at the leaf level of the working set

Algorithm 1 Priority distribution

1: Input
Working Set W
Feedback Table F

: Queue T
: // top to bottom propagation
: while (Q not empty)
9: N < pop(Q)
10: for each child C of N
11: Pc <+ max(F(C), Py — 1)
12: Q< push C
13: if (children of N have no children in W)
14: T < push N
15: // bottom to top traversal
16: while (7 not empty)

2
3
4:
5: Queue Q < push root of W
6
7
8

17: N < pop(T)

18: Py ¢ —o0

19: for each child C of N

20: Py < max(Py, Pc+1)
21: if (V not root of W)

22: T < push parent(XN)

for which Py > 0 are candidates for splitting as their LOD is con-
sidered too coarse by some rays. Nodes that are occluded or outside
of the viewing-frustum receive a negative priority and are therefore
subject to collapse.

During the split-and-collapse working set update, split opera-
tions are performed in accordance with the per-brick priorities es-
tablished above. If two bricks have equal priority, then we consider
the number of rays that sampled the bricks in question to augment
our prioritization. Thus, we achieve a fine-grained prioritization
during the LOD selection, which is used to adhere to global mem-
ory constraints and memory transfer budgets. Our priorities are
suitable for the prioritization of the out-of-core data delivery queue
in external memory scenarios as well.

(a)

Figure 2: lllustration of the propagation of priorities across the work-
ing set in our approach, depicted as a binary tree. Feedback infor-
mation is obtained for two nodes marked with arrows. The resulting
propagated priorities after the working set traversal are shown in (a).
Over the course of the working set update, nodes with negative pri-
ority are collapsed and nodes with a positive priority are split. The
updated working set is shown in (b).

4 SPATIOTEMPORAL LEVEL-OF-DETAIL BLENDING

Abrupt changes in resolutions between adjacent bricks cause salient
discontinuities that domain experts considered distracting. We mit-
igate these cross-block artifacts using an approach that extends the
one described in [3] where bricks are gradually interpolated with
data from their parent in the octree as rays are sampled towards the
boundary of coarser neighbors. Disturbing popping artifacts during
working set changes remain visible in [3] and we generalize their

binary spatial weights to continuous spatiotemporal weights to pro-
vide for visually pleasing transitions over time during working set
adjustments. In this approach, the working set selected for render-
ing is restricted such that the difference with respect to the LOD
between adjacent bricks does not exceed one level.

4.1 Restricted Working Set Selection

To maintain a restricted working set throughout LOD selection,
we include additional conditions for split and collapse operations.
The adjacency constraint dictates that node N can be split only if
(depth(N) — depth(B;)) < 1 holds for all its neighbors B;. As long
as there are neighbors that are too coarse, the split cannot be per-
formed. In order to implement this assertion, we keep a record of
adjacent bricks for each node to perform lookups of adjacent neigh-
bors in the current working set. Note that we store only the six di-
rect neighbors per node, as the remainder of at most 26 neighbors
are inferred using the references stored in the adjacent nodes.

All neighbors that are too coarse to allow for a split are collected
in an auxiliary stack. Nodes residing on this stack need to be split
before the restricted split of node N is valid. At this point, the adja-
cency constraint has to be re-evaluated for any node in the auxiliary
stack, eventually adding additional nodes to the auxiliary stack that
prevent splits of N’s neighbors. This process repeats until no more
nodes violating the adjacency constraint are encountered. Nodes
with no dependencies are split first, and node N is split last. How-
ever, the number of nodes that are split on a per-frame basis must
not exceed a pre-defined memory transfer budget and occasionally,
it may not be possible to split node N in the current iteration of the
working set selection.

Priority-based collapse operations of a node N are only executed
if all of its neighbors B; fulfill (depth(N) — depth(B;)) > —1. In
contrast to split operations, if there are neighbors preventing the
restricted collapse of node N, we do not force collapses of these
neighbors. This approach introduces an asymmetry or hysteresis
between split and collapse operations in the working set selection
which stabilizes the working set and significantly reduces flickering
between states.

In our implementation, we restrict the entire working set. In the-
ory, bricks that are occluded or outside the viewing-frustum do not
have to be subjected to restriction. However, as soon as previously
occluded bricks become visible or move into the viewing frustum,
not having restricted them before causes noticeable artifacts.

4.2 Temporal Level-of-Detail Blending

Our renderer animates transitions between LODs during split and
collapse operations. We associate a primary temporal weight ty
with each node in the hierarchy, indicating the interpolation be-
tween the parent and the node itself. During split operations, we
gradually increase fy over time from 0.0 to 1.0 at which point the
node is fully visible. Similarly, we decrease #y during collapse op-
erations. All nodes for which 7y > 0.0 are part of the working set.
Furthermore, we guarantee that the outcome of any temporal tran-
sitions pending do not invalidate the restriction of our working set.

4.3 Spatial Level-of-Detail Blending

Carmona et al. [3] use one bit at each vertex of a brick to indicate
whether any adjacent brick is coarser than the brick in question.
During rendering, they consider eight vertex bits for any given sam-
pling position to determine the influence of the parent of the brick
being sampled. If at least one adjacent brick is coarser than brick
N, samples taken from brick N and its parent in the LOD hierar-
chy are linearly interpolated to obtain the final sample and provide
for smooth transitions between bricks of differing levels of detail
(Figure 3).

In our work, we generalize the binary weight at each vertex to
a continuous spatiotemporal weight that is used to adapt gradually

LODi LOD -1

‘Working Set

Regular Rendering I I I I I
Adaptive Rendering I I I I I

Figure 3: lllustration of spatial level-of-detail blending. The working
set (top) contains bricks of differing level of detail. A regular render-
ing of these bricks comes with salient boundary artifacts (middle).
An adaptive rendering strategy provides for higher visual fidelity in
theses cases (bottom).

between the brick being sampled and its parent (Figure 4). The spa-
tiotemporal weight indicates the minimum time step of all nodes of
equal depth adjacent to the corresponding vertex. As soon as any
brick adjacent to the vertex is coarser than the brick in question,
we set the corresponding spatiotemporal weight to zero. Other-
wise, the spatiotemporal weight s, of vertex v for brick N is given
by s, = min(tg,), i < 8 where 1, represent the primary temporal
weights of all bricks of equal depth sharing vertex v. Whenever
a node in the working set is split or collapsed, the spatiotempo-
ral weights of all affected neighbors need to be updated accord-
ingly. This ensures that temporal transitions of bricks during work-
ing set adjustments correctly composite with spatial blending be-
tween bricks of differing levels of detail and provides for visually
continuous results regardless of the LOD chosen for rendering and
ongoing temporal transitions.

1.0

1.0

Figure 4: This Figure illustrates spatiotemporal blending for a
quadtree along with the configuration of spatiotemporal weights s,
shown in white squares and primary temporal weights ¢y in blue
squares. When the right brick is split all weights are initialized to
zero, indicating that samples are taken from the parent brick only.
Over time, we increase the weights, gradually adding to the influence
of the child bricks.

5 ADAPTIVE SAMPLING FOR SPATIOTEMPORAL BLENDING

In general, sampling the volume at a constant stepsize may cause
severe oversampling or undersampling because it is not view-
dependent and does not account for local changes in level-of-detail.
In our experience, abrupt changes of the stepsize during sampling
may cause visible artifacts. Therefore, we believe that an artifact-
optimized adaptive sampling strategy must avoid abrupt changes
in the sampling stepsize. Consequently, we consider a number of
influences to compute an adaptive stepsize at a given sampling po-
sition. These influences include the level of detail of the brick being
sampled as well as the ideal continuous level of detail at the sam-
pling position. To adapt the sampling density along rays to our
spatiotemporal LOD-blending approach, we also incorporate tem-
poral and spatial LOD blend weights in our adaptive stepsize com-

putation. Our particular transfer function (transparency highest in
the middle of the transfer function domain) requires the use of the
Gauss filter approach for appearance preserving LOD rendering as
suggested in [12]. However, this technique cannot be easily com-
bined with pre-integrated volume rendering since it already uses a
2D transfer function lookup. For this reason, we use adaptive sam-
pling in combination with opacity correction.

For perspective projections, the ideal level of detail decreases
as the distance between the sampling position and the view point
increases. To avoid oversampling or undersampling, the level of
detail should be related to the footprint of the pixel at the sam-
pling location, e.g. the diameter of the pyramid created by the pixel
and viewpoint at the sampling location. Since the edge length of
voxels increases by a factor of two between octree levels, how-
ever, voxels with an ideal edge length of vjge, do not usually ex-
ist in our octree. We can assume that the smallest voxels have
an edge length of one and thus, we define the fractional ideal
LODjgea) = MaxOctreeDepth — logs (Vigeal)- For consistency rea-
sons, we set the sampling distance along a ray to vjgey for a voxel
to pixel size ratio of 1:1. In case the brick of the ideal level of detail
is not present in the working set, we adapt the sampling stepsize
to the available brick being sampled (Figure 5(b)), which is usually
the highest LOD available in the current working set.

»
.

3 }rN=1.o
- }r’v:o.o
. .
. . ty=05
| .
.
0

(a) (b) (© (d)

Figure 5: Our adaptive sampling strategy considers four influences:
the ideal LOD at the sampling position (a), the actual LOD available
in graphics memory (b), the spatial blending between bricks of dif-
fering LODs (c) and the primary temporal blendweights for animated
transitions during working set adjustments (d). In these illustrations,
the color red corresponds to the highest, green to the lowest level
of detail and the viewpoint is assumed to reside in the lower right
corner.

In addition, we incorporate spatiotemporal LOD-blending as in-
dicated by the corresponding blend weights into our stepsize com-
putation since the stepsize along a ray should be consistent with the
fractional LOD required for spatiotemporal blending. Each brick
comes with eight spatiotemporal weights as well as one primary
weight, which are used to transition between the stepsizes required
for the brick being sampled and its parent brick. During a tem-
poral transition, we trilinearly interpolate all eight spatiotemporal
weights of the brick being sampled to determine the influence of the
parent brick at the current sampling position. In essence, the result
of the trilinear interpolation of spatiotemporal weights is used to in-
crease the sampling stepsize smoothly as we sample the ray towards
the boundary of a coarser neighbor. Starting from the sampling den-
sity required by the brick being sampled, we gradually increase the
sampling stepsize up to the sampling density required by the parent
brick (Figure 5(c)). The primary temporal weight ¢y of any adja-
cent brick factors into the computation of the spatiotemporal weight
of a vertex (Section 4.3). Therefore, any pending temporal transi-
tions correctly blend into the resulting stepsize and require no extra
handling.

As a result, we need to consider three cases with respect to the
current sampling position and the stepsize computation. First, if

there is spatial or temporal blending active for the current brick be-
ing sampled, we compute the stepsize from the fractional LOD that
corresponds to the interpolated blend weight at the current sampling
location. Second, if the available LOD is coarser than the ideal
LOD, then we use the sampling stepsize that corresponds to avail-
able LOD. Finally, if the ideal LOD is available, which requires
that [LODjgeq | is in the working set, we can use the corresponding
stepsize and interpolate appropriately between the corresponding
bricks based on the fractional part of LODjge,. As evident from
Figure 6, artifacts along brick boundaries are mitigated using this
scheme.

[

| . .

() (b) (©

Figure 6: Cross-brick artifacts along the boundary between bricks
of differing LODs without LOD blending and adaptive sampling (a).
Our spatiotemporal LOD blending and the adaptive sampling scheme
provide for smooth, almost imperceptible transitions in these cases
by gradually increasing the influence of the parent brick towards the
boundary of coarser neighbors (b). The current working set configu-
ration is shown in (c).

6 RESULTS AND DISCUSSION

The evaluation was conducted on an Intel Xeon CPU with 6 cores at
3.5 GHz, 128 GB main memory along with a Nvidia GTX Titan X
graphics card with 12 GB video memory. Large datasets in the oil
and gas domain are mostly confidential. Fortunately, we received
permission to use a seismic dataset from an oil field located in New
Zealand for publications. The dataset is 5989x3933x1501 voxels
in size and was processed using a bricksize of 647 voxels. Given
an octree depth of 7, its total size is 87.3 GB and contains 16 bit
Gaussian coefficients per voxel as contributed in [12] to overcome
inconsistency artifacts during pre-filtering and down-sampling of
the dataset.

Our working set generation consists of three steps. Over the
course of the priority propagation, we determine a priority for ev-
ery brick currently residing in the working set. Next, we resolve
any dependencies arising from the adjacency constraint to maintain
arestricted working set. Finally, the actual working set update is ac-
complished using an greedy-style split-and-collapse algorithm sim-
ilar to [2]. As shown in Figure 7, these three computational steps
perform in the range between 4 and 8 ms in total for the majority of
frames during a simple rotation scenario of the seismic dataset.

We demonstrate how the sampling along rays needs to be
adapted to produce a consistent result for our spatiotemporal blend-
ing solution as shown in Figure 8. For spatial level-of-detail blend-
ing and during temporal transitions, we need to take one additional
sample from the parent brick per iteration. However, this data ac-
cess is highly coherent and in both cases the sampling stepsize is
increased in accordance to the influence of the parent brick, result-
ing in a limited overall sampling overhead in the range of 10 to 20%
in our experience (Figure 7). This is also consistent with what was
reported by Carmona et al. [3] who performed only spatial blending
between LODs.

It is conceivable to prevent cross-block boundary artifacts by tri-
linearly interpolating voxels within a certain neighborhood of the
boundary with multiple ancestors in arbitrary, non-restricted work-
ing set configurations. However, data-based working set selection

(©)

Figure 8: Visualization of per-pixel iteration count during sampling of
the seismic dataset. The state-of-the-art sampling approach without
spatiotemporal blending shown in (a) and (b) requires a consider-
able number of sampling operations and produces salient artifacts
(marked blue) on the boundaries between adjacent bricks of differ-
ing levels of detail. Our adaptive sampling solution requires fewer
sampling operations (d) and and in combination with spatiotempo-
ral blending it results in smooth transitions across brick boundaries
(c). The intensity in (b) and (d) corresponds to the number of itera-
tions where the color white indicates a number of iterations exceed-
ing 1024.

metrics frequently deliver large differences in level-of-detail adja-
cent to homogenous regions in the volume. If the working set is
not restricted, then it is not obvious how to sample efficiently at
decreasing density over multiple bricks and multiple levels of an-
cestry towards the boundary of a coarser neighbor. Limiting the
transition to one brick only in this case is not advisable either, since
it leaves the boundary between the bricks in question noticeable to
some extent and would not provide for similarly convincing visual
results such as ours.

Our ray-guided working set selection strategy operates under the
assumption that bricks should be refined as soon as any ray requires
a higher level of detail, but a brick should be collapsed only if all
rays agree that its level of detail is too high. We realize this assump-
tion by storing the maximum difference in level-of-detail required
by any ray to the level-of-detail actually sampled per brick in the
feedback table. Alternatively, it is conceivable to store the aver-
age difference in level-of-detail, such that few rays requiring a high
level of detail do not necessarily force a split if the majority of rays
do not need a finer LOD. However, in practice, this could produce
inferior working sets that do not converge to the best possible level
of detail for all rays.

7 CONCLUSION AND FUTURE WORK

Our main contribution is a ray-guided artifact-optimized volume
rendering scheme and an efficient level-of-detail feedback mecha-
nism to guide the working set selection. We generalized the work
of Carmona et al. [3] from static spatial LOD blending to dynamic
spatiotemporal LOD blending to provide visually pleasing transi-
tions between adjacent bricks of differing levels of detail as well
as animated transitions over time during working set adjustments.
For the reduction of sampling artifacts in multi-resolution render-
ing, we demonstrated a consistent adaptive sampling technique that
accounts for spatiotemporal blending and avoids oversampling as

10

8

b b

® Priority Distribution (ms) ™ Working Set Update (ms)

(a)

Resolve Restrictions (ms)

100

75

3]

0

N

5

0

™ Working Set Size (%)

o WMMWW M

® Adaptive Rendering (ms) © Regular Rendering (ms)

(b)

Figure 7: These plots illustrate the performance of our system in a simple rotation scenario at a display resolution of 1920x1080. The seismic
dataset rotates once about the y-axis as depicted in the top rows (a). The stacked area chart shows the duration of the individual algorithmic
steps of the per-frame working set update in milliseconds. The memory consumption of our working set over time is depicted in the area chart
in (b). The bottom graph shows the raycasting time in milliseconds for both regular state-of-the-art volume raycasting as well as our adaptive

spatiotemporal rendering scheme.

well as abrupt changes of the sampling stepsize. In addition, we
provide implementation details for a priority-distribution algorithm,
connecting the feedback generated during raycasting with a split-
and-collapse working set selection strategy. Our feedback-scheme
allows occluded parts of the scene and bricks outside the frustum
to collapse automatically and optimizes memory utilization in a
straightforward manner.

We plan to augment our ray-guided metric with the data-based
distortion suggested by Ljung et al. [10] to focus on volume regions
with the highest information density. Of course, it is straightfor-
ward to use our algorithm in conjunction with quadtrees to achieve
spatiotemporal LOD-blending for large image datasets. Currently,
we are working on a visualization system for a series of large 3D
volumes captured over time. However, it is less obvious how to in-
clude our contributions into the visualization of such 4D data sets,
which already have an inherent temporal component.

ACKNOWLEDGEMENTS

We thank Rhadamés Carmona for early discussions of the spa-
tiotemporal blending approach and Christopher Lux for providing
the out-of-core volume rendering framework which we used to im-
plement the techniques presented in this paper. This work was sup-
ported in part by the German Federal Ministry of Education and
Research (BMBF) under grant 03IPT704X (project Big Data Ana-
lytics) and by the VRGeo Consortium. The seismic data set shown
in this work is courtesy of Crown Minerals and the New Zealand
Ministry of Economic Development (www.crownminerals.govt.nz

REFERENCES

[1] J. Beyer, M. Hadwiger, and H. Pfister. State-of-the-art in gpu-
based large-scale volume visualization. Computer Graphics Forum,
34(8):13-37, 2015.

[2] R. Carmona and B. Frohlich. Error-controlled real-time cut up-
dates for multi-resolution volume rendering. Computers & Graphics,
35(4):931-944, 2011.

[3] R. Carmona, G. Rodriguez, and B. Frohlich. Reducing artifacts be-
tween adjacent bricks in multi-resolution volume rendering. In Ad-
vances in Visual Computing, volume 5875 of Lecture Notes in Com-
puter Science, pages 644—655. Springer Berlin Heidelberg, 2009.

[4] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels:
Ray-Guided Streaming for Efficient and Detailed Voxel Rendering. In

[5]

[6]

(7]

[8]

[9]

(10]

(11]

(12]

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games
(I3D), pages 15-22. ACM, 2009.

K. Engel. Cera-tvr: A framework for interactive high-quality teravoxel
volume visualization on standard pcs. In Large Data Analysis and Vi-
sualization (LDAV), 2011 IEEE Symposium on, pages 123-124. IEEE,
2011.

T. Fogal, A. Schiewe, and J. Kriiger. An analysis of scalable gpu-
based ray-guided volume rendering. In Large-Scale Data Analysis
and Visualization (LDAV), 2013 IEEE Symposium on, pages 43-51.
IEEE, 2013.

E. Gobbetti, F. Marton, and J. A. I. Guitidn. A single-pass gpu ray cast-
ing framework for interactive out-of-core rendering of massive volu-
metric datasets. The Visual Computer, 24(7-9):797-806, 2008.

M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. Interactive
volume exploration of petascale microscopy data streams using a
visualization-driven virtual memory approach. Visualization and
Computer Graphics, IEEE Transactions on, 18(12):2285-2294, 2012.
P. Ljung, C. Lundstrom, and A. Ynnerman. Multiresolution interblock
interpolation in direct volume rendering. In Proc. EUROGRAPHICS
/1EEE-VGTC Symposium on Visualization and Graphics 2006, pages
256-266, 2006.

P. Ljung, C. Lundstrom, A. Ynnerman, and K. Museth. Transfer func-
tion based adaptive decompression for volume rendering of large med-
ical data sets. In Volume Visualization and Graphics, 2004 IEEE Sym-
posium on, pages 25-32. IEEE, 2004.

C. Lux and B. Frohlich. Gpu-based ray casting of multiple multi-
resolution volume datasets. In Advances in Visual Computing, pages
104-116. Springer, 2009.

H. Younesy, T. Moller, and H. Carr. Improving the quality of
multi-resolution volume rendering. In ISVC (2), pages 251-258.
Eurographics/IEEE-VGTC Symposium on Visualization 2006, 2006.

