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Output-Sensitive Avatar Representations for
Immersive Telepresence

Adrian Kreskowski, Stephan Beck, and Bernd Froehlich

Abstract—In this paper, we propose a system design and implementation for output-sensitive reconstruction, transmission and
rendering of 3D video avatars in distributed virtual environments. In our immersive telepresence system, users are captured by multiple
RGBD sensors connected to a server that performs geometry reconstruction based on viewing feedback from remote telepresence
parties. This feedback and reconstruction loop enables visibility-aware level-of-detail reconstruction of video avatars regarding geometry
and texture data, and considers individual and groups of collocated users. Our evaluation reveals that our approach leads to a significant
reduction of reconstruction times, network bandwidth requirements and round-trip times as well as rendering costs in many situations.

Index Terms—Immersive telepresence, avatars, output-sensitive rendering, distributed virtual environments.

1 INTRODUCTION

Immersive 3D telepresence systems embody participants
through realistic three-dimensional avatars, enabling them
to meet in virtual worlds. The most realistic avatars are
created by capturing participants using multiple cameras
surrounding the workspace [1], [2], [3], [4], [5]. These so-
called 3D video avatars are simultaneously distributed over
the network between remote locations, integrated into a
shared virtual scene and displayed in stereoscopic 3D for
each participant. Recent approaches to real-time 3D cap-
turing and reconstruction provide high-quality 3D video
avatars using volumetric fusion of multiple color and depth
(RGBD) sensors [4], [5], [6]. To reduce the bandwidth re-
quirements for streaming 3D video avatars, several methods
for real-time compression of geometry [7], [8], [9] and image
streams [10], [11] were proposed. However, these methods
do not include information about the visibility and size
of avatars as seen by remote participants. As a result,
they cannot make optimal use of the available bandwidth,
burdening telepresence clients with handling and rendering
avatars with much more detail than can be perceived from
the perspective of a participant.

To exploit this potential, we present a novel 3D telep-
resence architecture that creates output-sensitive 3D video
avatars at an appropriate level-of-detail by establishing in-
dividual closed-loop feedback between pairs of telepresence
parties. The central idea of our approach is to reconstruct,
compress and transfer only parts of the avatars’ geometry
and texture that are potentially visible to remote telepres-
ence participants (Figure 1). To achieve this, a volumetric
brick-based structure keeps track of visibility, with respect
to the participants’ perspectives and scene occlusions. The
resolutions of the truncated signed distance field (TSDF) for
the avatars’ geometry creation, as well as the size of the
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corresponding texture arrays, are adjusted on a per-frame
basis, with respect to the viewing feedback information
from remote telepresence parties, which leads to quasi-
continuous level-of-detail avatar representations. As a re-
sult, the creation, transmission and rendering of 3D avatars
is significantly accelerated in many situations since invisible
surface parts are not reconstructed and consequentially not
processed at all.

We especially account for multiple collocated users in
a telepresence group by enabling them to request a sin-
gle merged avatar representation from a remote site. This
effectively reduces bandwidth requirements by avoiding
the transmission of redundant geometry seen by multiple
collocated users at the expense of only slightly increased
rendering costs for their respective rendering processes.

Our work is inspired by output-sensitive rendering
approaches for large model visualization [12], [13], [14]
which generally precompute level-of-detail representations
and visibility information. We approach the challenge of
highly dynamic scenes captured in real-time, representing
the postures and gestures of humans and parts of their
surrounding environment.

Our design, implementation and evaluation of a 3D
telepresence architecture that creates, transmits and renders
output-sensitive 3D video avatars for multi-party commu-
nication provides the following contributions:

« A continuous visibility-aware level-of-detail surface ex-
traction and texturing method that significantly re-
duces avatar reconstruction, transmission and render-
ing times as well as network bandwidth requirements.

o A novel method for the online creation of pre-blended
textures at continuous levels-of-detail which represent
each visible point on the surface of an avatar only once.

e An efficient implicit texture mapping approach for
avatars based on precomputed calibration volumes.

o A flexible feedback loop that allows to request com-
bined avatar representations for an entire group of
collocated users sharing similar perspectives, enabling
a trade-off between required network bandwidth and
rendering performance.
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Fig. 1: Output-sensitive avatar reconstruction and rendering

in an immersive telepresence application: A user at location A

(avatar) and users at remote location B meet face-to-face in a shared virtual environment and explore a 3D model of a lion statue
standing. Our system captures the participant at location A using multiple color and depth sensors, and creates output-sensitive

3D video avatar geometry and textures by considering all tra

cked viewing perspectives of the remote users at B. Parts of the

avatar that are either occluded (red) or out of frustum (blue) for all all remote users are not reconstructed at all. Furthermore,

back-facing parts (purple) are efficiently identified during isosu

rface extraction and excluded from geometry creation. In this way,

our system creates only the potentially visible fraction of the 3D video avatar (green) at an appropriate level-of-detail. At location
B, the participants’ avatars are reconstructed by a second server (not illustrated) based on the viewing feedback obtained from

the participant at location A.

Our quantitative evaluation reveals that our 3D recon-
struction pipeline can create output-sensitive avatars from
four RGBD-image streams at more than 200 Hz on current
graphics cards throughout different telepresence scenarios.

The implementation of our remote avatar reconstruction
approach in a distributed virtual reality framework [15] al-
lows us to demonstrate a reduction in avatar reconstruction
time, rendering time and in particular network bandwidth
requirements, at low end-to-end latency. In situations where
local and remote users are further apart or largely occluded,
data rates are quite low and approach zero for invisible
avatars. In our experience, users generally did not notice
any differences between avatars at original resolution and
their level-of-detail counterparts, which was also confirmed
by very high SSIM scores.

2 RELATED WORK

In collaborative virtual environments (CVE) users are gener-
ally represented as either computer-generated (CG) avatars
or real-time reconstructed 3D video avatars. CG avatars are
often used in combination with motion-tracking of the par-
ticipants, e.g. [16], or applied to simulate hundreds [17] or
even thousands [18] of agents in CVEs. Obvious advantages
of CG avatars are light-weight rendering and transmission
between remote sites since only skeleton joint poses are
involved for animation, however, at the cost of a-priori
generation and rigging. In contrast, immersive telepresence
systems use real-time captured user representations called
3D video avatars which enable participants to instantly
join CVEs. Moreover, user studies confirmed that 3D video
avatars appear natural [2], [3] and can convey mimics better
and with less effort than CG avatars [19]. However, efficient
real-time 3D reconstruction, transmission and rendering
remain challenges when using 3D video avatars [2], [20].
Existing research in real-time 3D capturing and recon-
struction provides an essential foundation for our work.
Recently proposed techniques build on RGBD sensors for
3D capturing and can be divided into three categories:

methods using explicit [1], [2], [21], implicit [6], [22] or
spatio-temporal [4], [5] fusion of multiple RGBD-sensor con-
tributions. Alexiadis et al. [21] propose to explicitly stitch
mesh segments derived from a step discontinuity constraint
triangulation, yielding a watertight 3D mesh. Implicit 3D
reconstruction approaches fuse multiple sensor contribu-
tions volumetrically using a truncated signed distance field
(TSDF) [23]. A major advantage of volumetric fusion is the
ability to filter depth measurements in object space and
to reconstruct implicit surfaces between unseen or empty
space [6]. Moreover, artifacts such as holes or inconsistent
appearance for changing viewing perspectives inherent in
explicit approaches are mitigated [1], [2]. Current state-of-
the-art 3D reconstruction approaches [4], [5] exploit frame-
to-frame coherence through spatio-temporal fusion to fur-
ther improve TSDF volume quality. For 3D reconstruction,
most approaches use the Marching Cubes Algorithm [24]
to extract a consistent surface at zero crossings within the
volume. The 3D video avatar’s geometry can then be ren-
dered and textured by blending the color images based on
projective texturing [4], [6] or using a texture atlas [5].

Our 3D reconstruction approach builds on volumetric
fusion using TSDF integration. In contrast to previous meth-
ods [4], [6], our novel brick-based acceleration structure en-
ables efficient culling of subsets of the 3D capturing volume,
significantly reducing processing costs during integration
and surface extraction. Moreover, we texture the 3D video
avatar’s geometry using pre-blended textures created at an
appropriate level-of-detail with respect to its visibility and
projected size. Unlike 3D reconstruction methods that use a
texture atlas [5], [25], the color information in our textures is
not rearranged. Maintaining the neighborhood of triangles
in texture space has the advantage of artifact-free hardware-
assisted bilinear interpolation and avoids explicit padding
or special triangle packing [26]. In addition, we avoid
encoding of per-vertex texture coordinates by extending
our existing calibration approach [27] to facilitate mapping
vertex positions to texture space during run time using
pre-computed calibration volumes. This allows a further
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reduction of data rates during both 3D reconstruction and
rendering.

A major challenge of immersive 3D telepresence systems
is the transmission of data streams between distributed loca-
tions. In our application, 3D capturing and reconstruction is
performed at a different location per participating party. The
reconstructed avatars’ 3D geometry and texture information
must therefore be transferred from each party’s location to
all other parties. Existing real-time reconstruction systems
typically create data rates ranging from several hundred
MBit/s [2] to several GBit/s [3] depending on the resolu-
tion and frequency of the 3D capturing and reconstruction
system. Transmission over low bandwidth network connec-
tions therefore requires the use of compression techniques.
Standardized geometry compression techniques (e.g. [28],
[29]) have good rate-distortion characteristics, but are not
well applicable in 3D telepresence applications due to time
consuming mesh analysis required for efficient encoding.
Recently, compression approaches have been proposed for
3D telepresence applications, e.g. for meshes derived from
RGBD sensor-based 3D reconstruction pipelines [7], [8] or
for time-varying sequences of point clouds [9]. In addition,
real-time compression and transmission of live-captured 4D
performances through mid-to-low bandwidth networks was
recently achieved based on compressing TSDF volumes [30],
[31]. Although these approaches require pre-training and
introduce additional decompression and extraction over-
head before rendering, they show that streaming 3D video
avatars can be very well achieved, trading some of the
geometric fidelity by increased compression performance.
However, existing compression schemes for 3D telepresence
applications are not designed to provide output-sensitive
geometry transmission, because they do not incorporate
feedback information from the participants or occlusion
information from the shared scene state. In contrast, our
approach makes efficient use of this information throughout
3D reconstruction, and prior to data transmission, enabling
output-sensitive data rates independent of the compression
method used. Although we do not focus on the compression
of output-sensitive avatar data in this paper, we demon-
strate the impact of our level-of-detail based reconstruction
on the required bandwidth by example of intra-frame en-
coded avatar geometry and texture.

Several research groups propose data reduction meth-
ods for 3D telepresence that are orthogonal to the explicit
compression of data streams. For example, the distributed
3D reconstruction system blue-c [32] transmits point primi-
tives [33] using a differential updating scheme that exploits
spatio-temporal coherence to reduce the data rate. Lamb-
oray et al. [34] improves on this by applying predictive
coding. The idea of only processing data that is actually
visible for a user was investigated for camera arrays [35].
Wang et al. [36] suggest to reduce redundancy in color
images from overlapping RGBD sensors [36] prior to trans-
mission. Kuster et al. [37] apply 3D reconstruction and
local rendering in a bidirectional telepresence system. In
their system, stereo image pairs are transferred to the client
site, which enables the use of standardized, and therefore
efficient, compression schemes. Such image-based avatar
representation comes at the expense of incorrect stereo-
scopic perception, as the display cannot adapt to the rapidly

changing viewing perspectives of the users. In contrast to
these systems, our 3D telepresence architecture creates and
sends output-sensitive geometric 3D avatar representations,
efficiently reduces data rate and rendering load, and enables
correct stereoscopic display for the participants.

3 3D TELEPRESENCE ARCHITECTURE

Our proposed 3D telepresence architecture targets scenarios
where multiple groups of one or more participants meet in
a shared virtual environment. We use the term group to refer
to members of a telepresence party, who request and receive a
merged avatar representation of another party, in contrast to
receiving an individual avatar for each member. The users
of a group are typically collocated, i.e. they are in the same
physical workspace and potentially share a display, such as
our projection-based multi-user 3D display [38]. The term
client refers to the technical view on a group. The client
renders the received merged avatars for the group mem-
bers and sends the group’s feedback to the reconstruction
processes of the remote parties. Output-sensitivity in this
context refers to the generation of only potentially visible
avatar geometry and texture information, at an appropriate
level of detail for remote telepresence participants. In the
following sections, we provide an overview of a generalized
telepresence architecture, show how it can be extended with
closed-loop feedback, and describe our implementation.

3.1 Telepresence Architecture Overview

Figure 2 illustrates software architecture components typi-
cally used by immersive telepresence systems. The diagram
represents a generic architecture where a 3D reconstruction
component receives an (RGBD) image stream, performs 3D
reconstruction and forwards the avatar data into a render-
ing process. For 3D capturing, either custom-built stereo-
camera rigs [4], [5] or off-the-shelf RGBD sensors such as
the Microsoft Kinect [1], [2], [21] can be applied. Besides the
3D capturing stage, the diagram further includes additional
components and communication channels for implementing
our proposed closed-loop feedback. Note, that the diagram
does not enforce a specific distribution of the architecture
components to remote and local sites. It therefore includes
systems that do not make use of a remote reconstruction
approach [21], [22] as well as systems that do [4], [5]. For
the latter, an avatar’s geometry is created on a remote server
and sent to a telepresence client which can render the avatar
in a straightforward manner for a group and send their
feedback to the server. Compression and decompression are
optional and therefore not illustrated.

In general, immersive telepresence systems [2] build on
four fundamental components: First, a 3D capturing system
captures the participants geometrically and radiometrically
at sufficiently high frame rates (> 30 Hz) using multiple
surrounding cameras. Second, a 3D reconstruction process
creates 3D video avatars from the captured RGBD image
streams. Third, a client rendering process receives the avatar
data from the 3D reconstruction process and renders the
shared virtual scene including the avatars. As a fourth
component, a global scene server receives local scene changes
from individual clients and delivers consistent global scene
updates to all of them.
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Fig. 2: Schematic illustration of components in 3D telepresence
systems: RGBD image streams are transmitted from a 3D cap-
turing to a 3D reconstruction component, which generates an
avatar representation and transmits it to the client rendering
process (black arrow). Scene updates are streamed from a global
scene server to clients and vice versa (blue arrows). We propose
to send viewing feedback information from the client to the re-
construction process (green arrow). In addition, we propose to
add a new component that creates occluder representations of
the virtual scene received from the scene server, and forwards
them to the reconstruction process (red arrow).

3.2 Closed-Loop Feedback

We extended the four fundamental components of a 3D
telepresence architecture by introducing closed-loop feedback
mechanism to enable a truly output-sensitive version of the
3D reconstruction process, with regard to the participants’
perspectives on the shared virtual environment. Using
closed-loop feedback, the reconstruction process generates
individual 3D video avatar representations for each user
or for an entire group of collocated participants depending
on the type of feedback information provided. In general,
feedback or viewing feedback refers to the camera parameters
of each virtual eye for stereoscopic display, as well as
information about the rendering resolution on the client.
In addition to the viewing feedback, the 3D reconstruction
server uses lightweight occluder information provided by
a occluder generation process. This information can be used
to identify parts of 3D video avatars that are occluded by
virtual scene content. As a result, the 3D reconstruction
process only reconstructs parts that are potentially visible
from the current viewing perspectives of the participants.
Figure 3 illustrates our approach of sending feedback
information from telepresence participants to 3D reconstruc-
tion processes for creating, and requesting output-sensitive
avatars. Feedback can be either sent individually (individual
feedback) or as a group (group feedback): Individual feedback
is used for single user telepresence clients, where each client
requests an individual version of an avatar. For many-to-one
and many-to-many communication, we suggest to create a
combined avatar representation for collocated users, instead
of multiple avatars optimized for each user’s individual
view. In this case, the feedback information is aggregated for
all collocated participants and referred to as group feedback.
The motivation for sending group feedback is that col-
located telepresence participants, in particular when using
projection-based display systems [38], assume similar per-
spectives and thus see similar parts of a 3D video avatar.
As a result, group feedback allows to perform certain steps
of the reconstruction process only once for the entire group
instead of once per user. Consequently, a combined avatar
representation has to be created and transferred only once.
Moreover, in comparison to multiple individual feedback
requests, group feedback reduces the total amount of ge-
ometry created by the reconstruction process and yields

B
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<4— Individual Feedback

D ECLEEED Group Feedback )
—3 Output-sensitive Avatar O Capturing Space

Fig. 3: Output-sensitive avatar reconstruction using our feed-
back mechanism in a telepresence scenario between locations
A and B. The participant at A observes the scene through an
own individual display. The collocated participants at B share a
multi-user 3D display and navigate together through the virtual
environment, adopting similar perspectives into the virtual
world. At each location, the participants are captured in 3D
and a reconstruction process creates output-sensitive avatars
based on individual or group feedback information. The client of
the participant in A, requests a group avatar representation
from the reconstruction process at B by sending individual
feedback. The rendering client at B requests a merged avatar that
is output-sensitive w.r.t. the views of all participants in B from
the reconstruction process at A based on group feedback. This
simplified example can be extended beyond two parties by
adding the corresponding communication channels.

significantly lower bandwidth requirements at only slightly
increased rendering costs on the client side (cmp. Subsection
5.4).

3.3 Telepresence Architecture Implementation

Our implementation is based on a server-client model. The
3D capturing, 3D reconstruction and occluder generation com-
ponents work together (cmp. Figure 2) as a processing group
in a dedicated server and provide the avatar geometry for
all client rendering components at any remote location. In
the following, we provide some implementation details and
reasoning about the two components which are fundamen-
tal additions for 3D reconstruction pipelines using viewing
feedback information as proposed, the Occluder Generation
process and the Feedback Channel.

3.3.1

The implementation of the occluder generation process de-
pends on the available hardware (graphics cards) and the
desired behavior (i.e. occlusion handling). In our implemen-
tation, we opted for the following features:

Occluder Generation

« Each object in the scene excluding avatars is considered
to be an occluder.

e The occluder generation process is executed on a GPU
on the reconstruction server machine to avoid latency
and reduce CPU load.

e The occluder generation process is executed asyn-
chronously to the 3D reconstruction process. This al-
lows us to provide the reconstruction process immedi-
ately with the latest occluder representation generated.

o The occlusion buffer is downsampled to accelerate the
3D reconstruction process, creating a trade-off between
occlusion culling performance and effect of the culling.
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3.3.2 Feedback Channel

Since pipelined processing as well as communication over
network introduces latency, we aimed to keep the main
feedback loop between the rendering client and the recon-
struction server as short as possible (Figure 4).
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v Viewing Avatar , ‘ v Viewing Avatar R ‘
" Feedback Datat » ‘Feedbackt;1 Datapy; »
server [+~ “pvatan | e
Server Avatan Avatar..,

Frame; Frameg;q

Time

Fig. 4: Processes involved in the main feedback loop. To min-
imize the round-trip time, the clients’ feedback (green arrows)
is collected and sent over network to the reconstruction server
before the actual rendering of previously obtained avatar data
(black arrows) begins.

The viewing feedback from the rendering clients to the
reconstruction servers should be sent with a frame rate
equal to the rendering frequency. The feedback is therefore
sent before the rendering process of the current frame is
started. In this way, the time between sending feedback and
receiving the reconstructed avatar does not depend on the
actual achievable frame rate of the client, but only on the
network latency, reconstruction time of the remote server
as well as optional compression and decompression times.
However, since the received avatar must be visualized on
the rendering client side, the time for transferring from CPU
to GPU memory and rendering must be added to the round-
trip time.

4 3D AVATAR RECONSTRUCTION

For creating output-sensitive 3D video avatars, we capture
collocated users with a cluster of multiple RGBD sensors [2],
[4], [5], [6]. The central data structure of our 3D reconstruc-
tion pipeline is a truncated signed distance field (TSDF),
which is used to integrate and fuse multiple depth-sensor
contributions [6], [23]. However, in comparison to previous
methods, we apply a brick structure that partitions and
tracks the occupied space within the capturing volume,
which is a key for output-sensitive reconstruction. In par-
ticular, the brick structure enables efficient visibility culling
and accelerates the 3D avatar reconstruction significantly,
since it allows us to integrate only sensor contributions that
are potentially visible for remote participants.

In our lab, a typical 3D capturing space covers a working
volume of 3 x 3 x 2.5m3. We align the TSDF volume
with the real world such that the boundaries of the TSDF
volume match those of the 3D capturing volume. To align
the different spaces, we calibrate the RGBD sensors using a
volumetric method [27] which allows us to map from coor-
dinates in depth-sensor space to 3D positions in TSDF vol-
ume space (Cgs¢sqr) and to texture coordinates of a depth
sensor’s corresponding color sensor (Cg.). To perform
precise TSDF volume-to-sensor projections required during
TSDF-integration (Section 4.4) and texturing (Section 4.6),
we introduce two additional types of calibration volumes.

The first type (Cysaf—q) maps coordinates in TSDF volume
space to a depth-sensor’s coordinate system by inverting
the mapping Cgisqr provided by our original method.
The second type (Cisapsc) directly maps coordinates in
TSDF volume space to a color sensor’s coordinate system by
merging Cgqp—q and Cg,.. Our calibration scheme enables
projections from 3D capturing volume space to individ-
ual RGBD-sensor spaces and vice versa through efficient
hardware-accelerated volume texture lookups during run-
time (cmp. Figure 5).

1
Color Sensor

Depth Sensor

Fig. 5: Schematic illustration of four types of calibration vol-
umes used during integration and texturing. Caisqf maps
from depth sensor to TSDF volume space whereas Cy... maps
from depth sensor space to coordinates of the RGBD-sensor’s
corresponding color image [27]. We use two additional volumes
mapping from TSDF volume to depth sensor space (Cisafd),
and directly to a sensor’s color image (Ctsaf—c)-

As a brief overview, our output-sensitive 3D recon-
struction pipeline consists of the following processing steps
(Figure 6):

1) Estimation of level-of-detail required during recon-
struction, and partition of the capturing volume into
bricks of corresponding size (Subsection 4.1).

2) Level-of-detail-aware filtering, downsampling and pro-
cessing of RGBD image streams, as well as occupancy
tracking of TSDF volume bricks. Unoccupied Bricks are
not considered in subsequent steps (Subsection 4.2).

3) Frustum and occlusion culling of occupied bricks, using
feedback information provided by the rendering clients,
as well as scene occluder information provided by the
occluder generator. Non-visible bricks are not consid-
ered in subsequent steps (Subsection 4.3).

4) TSDF integration of bricks that are both occupied and
visible (Subsection 4.4).

5) Brick-based surface extraction of front-facing triangles
(Subsection 4.5).

6) Pre-blended texture generation at an appropriate level
of detail from color image streams (Subsection 4.6).

After the geometry extraction and pre-blended texture
generation, we apply geometry and texture compression to
further reduce the required bandwidth for network trans-
mission (Section 4.7).

In the following Subsections, we explain each step of our
3D reconstruction pipeline in detail.

4.1 LOD Estimation and Bounding Box Division

Our reconstruction pipeline is guided by a level-of-detail
factor [, determining the granularity at which the individ-
ual reconstruction stages operate. To select an appropriate
level-of-detail for avatar reconstruction depending on the
participants’ view, we evaluate their viewing feedback. In
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Fig. 6: Processing steps for creating output-sensitive 3D video avatars. Our 3D reconstruction pipeline adapts to the participants’
perspectives into the shared virtual environment by incorporating viewing feedback and scene occluder information. In this
example, the legs of the video avatar are largely invisible to the participants and are therefore culled prior to TSDF integration. A
detailed explanation of the individual processing steps of our 3D reconstruction pipeline can be found in Section 4.

particular, we allow for separate level-of-detail factors for
both the geometry reconstruction stage and the texture
creation. This is especially important for RGBD sensors with
a high discrepancy between depth and color resolution, such
as the Kinect 4 Azure used in our evaluation. For the sake of
simplicity, we use a common level-of-detail factor ! for both
geometric and texture level-of-detail in our description.

We calculate [ by an estimator E,. projecting the cap-
turing space volume V into screen space and calculating the
maximal projected size with respect to all pieces of viewing
feedback f; as follows:

| = 1’I11H(].07 o fmaX Essc(‘/? fl)) (1)
1.

IN

Here, the attenuation « is chosen based on the conserva-

tivity of E,. and may be defined as a function of distance to

the viewer. Depending on I, the side length of TSDF voxels

is spatially enlarged by a factor of % As a result, decreasing
[ yields coarser TSDF integration and surface extraction.

1=0.7 1=04

Fig. 7: Impression of the avatar reconstruction quality with
three different geometry and texture level-of-detail factors in
a first implementation using four RGBD sensors. From left
to right: Varying level-of-detail ratios [ affect the avatar re-
construction. The occupied TSDF bricks are outlined in green
behind the avatar. Across all [, each brick contains 10° voxels.
Only voxels contained in the green bricks are integrated and
subsequently serve as input for the geometry extraction stage.
The brick size increases proportional to . The bricks are cubical
with a side length of 10 cm, 14.3 cm and 25 cm, respectively.

4.2 Texture Processing and Occupancy Tracking

We filter and downsample the color and depth textures of
each sensor with respect to [, such that subsequent texture
operations are performed on coarser texture levels-of-detail.
Color texture filtering can be performed by a combined

low-pass filtering and downsampling operation. In contrast,
depth textures have to be downsampled taking the avatar’s
silhouette into account.

Subsequently, the depth images are smoothed using a
bilateral filter in order to reduce sensor noise. We then mark
each depth pixel that projects into the bounding box defined
by the TSDF volume as a foreground pixel and compute
its surface normal using central differences. Subsequently, a
quality value is calculated for each foreground pixel which
serves as a weighting factor during TSDF integration and
texture blending [1], [6]. In addition, the texture process-
ing stage projects each filtered depth pixel to TSDF vol-
ume space and tracks the bricks” occupancies using atomic
counters. Consequently, only those bricks whose occupancy
exceeds a predefined threshold must be processed further,
while the other bricks are considered empty and are ex-
cluded from this early stage on.

4.3 Frustum and Occlusion Culling

We test the visibility of the occupied bricks against the
latest occluder buffers and viewing frustra as computed
from the feedback of the remote groups. The visibility of
bricks is tracked using a custom visibility buffer which stores
a visibility flag for each brick.

After initializing the visibility buffer such that all bricks
are considered to be invisible (set to zero) in the current
frame, we bind the current occluder buffer as a depth
attachment to a frame buffer and render the bounding box
of each brick from the participant’s perspective. If a brick is
visible for any participant, its visibility is set to one. As a
result, a set of bricks marked as visible is generated, which
is then processed in the next stage.

4.4 TSDF Integration

Our brick structure allows us to track regions in the cap-
turing volume that are both visible and potentially contain
surfaces. This is a major advantage compared to previ-
ous volumetric fusion methods [4], [21], since a significant
number of bricks are irrelevant for the avatar’s surface
and consequently only a fraction of the voxels has to be
integrated. Despite depending on the size of the capturing
volume, the scene content, and the level-of-detail factor, our
bricking technique allows to exclude 50 to 90 percent of
the voxels during TSDF integration for our capturing setups
(cmp. Figure 7).
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The TSDF integration itself is performed per brick and
runs entirely on the GPU. For each voxel of a visible,
occupied brick, the following steps are executed: first, the
voxel is projected into the depth image of each sensor using
the calibration volumes. Next, the signed distances between
the voxel and the foreground pixels are weighted using the
precomputed quality maps and accumulated. Finally, if the
absolute value of the signed distance sd is smaller than
the TSDF-limit denoted as limit, the value is stored at the
voxel’s position inside the TSDF volume. If sd is smaller
than —limit for all sensors, —limat is stored, otherwise, if
sd is greater than limit for all sensors, limit is stored.

\
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Fig. 8: (a) Conventional integration approaches evaluate the
distance between every voxel within a TSDF volume and an
implicit surface [21]. (b) Our approach integrates only voxels
residing in occupied bricks, empty bricks are omitted. Be-
tween occupied and empty bricks on the inside of the surface,
a naive implementation creates artificial zero crossings and
therefore erroneous isosurfaces. (c) Clearing the TSDF volume
with —oo instead of —limit, interpolation between integrated
voxels (green or orange) and unintegrated bricks (violet), cause
artificially high negative gradients. These gradients indicate
artificial isosurfaces that should not be extracted.

Depending on the brick size and the actual coverage
of the avatar within the TSDF volume, bricks inside of
the real implicit surface of the avatar may be unoccupied,
resulting in unintegrated bricks containing voxels with dis-
tance —limit. If such bricks reside next to bricks containing
positive distance values, they need special consideration
such that no artificial surface geometry is created in the
subsequent isosurface extraction stage. We clear the volume
at the beginning of each integration frame with —oo instead
of —limit to avoid the creation of artificial geometry in the
subsequent reconstruction stage (see Figure 8).

4.5 Front-Face Geometry Extraction

To extract the avatars’ surfaces we apply the Marching
Cubes [24] algorithm for voxels contained in visible and
occupied bricks. Note that we are able to reuse the allocated
memory for the highest TSDF volume resolution across all
levels which allows for a memory efficient implementation
of continuous level-of-detail geometry extraction.

As described before, naive brick-based extraction creates
artificial surfaces, which remain hidden but create an over-
head of approximately 12%. We identify artificial surfaces
based on the high gradients during interpolation between
integrated and unintegrated voxels (see Figure 8) and skip

the extraction in such cases. Triangles belonging to valid
surface data are finally backface-tested against all eye posi-
tions obtained from the viewing feedback and stored if any
participant can see the triangle.

4.6 Pre-Blended Texture Generation

The gist of our texturing approach is to implicitly assign
triangles to the sensor that has the best view of the triangles,
using the calibration volume of the sensor. At reconstruction
time, a triangle is implicitly assigned to the texture T_B
corresponding to the sensor that has the best view of that
triangle. If a triangle is visible to multiple sensors, color
contributions from all contributing input textures (cmp.
Section 4.2) are blended and added to T_B. Regions in
other textures where the triangle would have been visible
remain empty. The weighting of the texture contributions
is done using the normalized weights of the individual
color sensor contributions according to the centroid of the
triangle. Algorithm 1 outlines the process of pre-blending
texture information per triangle. In the algorithm, the trian-
gle footprint refers to the set of pixels that comprises the
projected and rasterized triangle, in texture space of the
sensor for which it had highest weight.

Algorithm 1 Pre-Blended Texture Creation

Input Sensor Positions P
Input RGBD Textures & Quality Maps per sensor M
Output Blended & Masked RGB Textures per sensor N
: procedure BLEND_TEXTURES_PER_TRIANGLE
for tin 0.num_triangles -1 do
sensor_weightso..num_sensors—1 < {0,..,0}
for sin 0.num_sensors -1 do
sensor_weights, < get_weight(t, Ps, Ms )

h + get_highest_weight_index(sensor_weights)
rasterize_triangles(t, M, Ny, sensor_weights)

: procedure GET_WEIGHT(t, Ps, M)

cen <« get_triangle_centroid(t)

10: depth < sample_depth_map(cen, M)

11: if depth < TSDF_limit then

12: quality <— sample_quality_map(cen, Ms)

13: sensor_distance <— length(cen - Ps) )

14: return quality / (sensor_distance + )

15: procedure RASTERIZE_TRIANGLES(t, M, Ny, W)
16: triangle_footprint < get_best_tri_footprint(t, Ni)

® N TN

h

17: for texel_pos in triangle_footprint do
18: col + blend_texels(t, W, M)
19: write_color(texel_pos, blended_color, N1,)

By collecting and pre-blending texture contributions
from multiple input textures into a single texture and sam-
pling it at implicitly determined positions using the calibra-
tion volumes, we do not only remove redundancy between
the original color images, but also avoid the necessity of
storing texture coordinates for the triangles. Texture regions
which were not used for storing pre-blended color informa-
tion for any triangle remain empty. In fact, we only transmit
regions inside of a tight texture space bounding box for each
original RGBD sensor, which leads to significantly reduced
bandwidth requirements for the color texture information.
Figure 9 provides an example of the pre-blended texture
creation for an avatar that is only partially visible to a
participant. Our texture creation approach scales well with
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an increasing number of RGBD sensors, because the number
of texels which actually store color information in the output
texture is mainly determined by the resolution of the sensors
and the maximal texture footprint of the set of extracted
triangles, but it is largely independent of the number of
sensors. Further sensors add information mainly in regions
which are not seen by other sensors.

Fig. 9: Example of our pre-blended texture creation. The avatar
(right) is seen by a local participant and its lower body is
out of frustum. Areas in the input color textures (top row)
contributing to visible triangles are blended and stored in the
output textures (bottom row). Only texels contained in the tight
texture bounding boxes (green) are transmitted to the clients.

4.7 Compression of Reconstructed Avatar Data

Although our output-sensitive reconstruction pipeline
greatly reduces the amount of geometry and texture data
generated for video avatars, data should be compressed
prior to transmission to further reduce bit rates.

Systems similar to ours [9], [39] run both the remote
reconstruction server and local rendering client in multi-
threaded environments to compress geometry and texture
data asynchronously with respect to the 3D reconstruction
stage. Although our work does not focus on compression,
we want to show realistic data rates achieved through stan-
dard compression stages that are easy to incorporate into the
system, and are orthogonal to our reconstruction approach.
For this reason, we apply standard intra-frame compression
methods. Specifically, we compress the extracted geometry
data using lossless compression on the CPU by means of
deflation [40] and near lossless compression of the texture
data using high-quality JPEG compression.

Prior to compression with these standard approaches,
we extract the tight fitting texture space bounding boxes and
encode the vertex position coordinates using 16 bit uniform
quantization [9]. The texture coordinates of the triangles
are implicitly defined by our pre-blending heuristic and
the calibration volumes, which are sent to the clients at the
beginning of the telepresence communication. Hence, we do
not store per primitive texture coordinates.

5 EVALUATION AND DISCUSSION

We evaluated our system in two telepresence scenarios in
order to investigate the impact of output-sensitive avatars
created by individual and group feedback. Specifically, we
investigate and discuss the influence of our techniques on
reconstruction, round-trip and rendering times as well as
required bandwidth for the transmission of the avatars. We
also discuss the scalability of our approach regarding the
number of telepresence groups, participants per group, and
RGBD sensors.

5.1 Test System Specifications

We set up a one-way telepresence system consisting of the
following components (cmp. Section 3.3): a 3D capturing
system, a global scene server, a 3D reconstruction server
and a telepresence client. All systems are connected via
a 10 GBit/s local area network. The 3D capturing system
runs at 30 Hz using four synchronized Kinect 4 Azure each
providing a color resolution of 2560 x 1440 pixels and a
depth resolution of 640 x 576 pixels. The scene server runs
on a machine equipped with an Intel Xeon CPU E5-1650
v2 running at 3.5 GHz using less than 2 GB of RAM. The
3D reconstruction and occluder generation processes run on
the same machine equipped with an Intel Xeon E5-2687W
v3 running at 3.1 GHz using two dedicated graphics cards
(NVIDIA Quadro RTX 6000) and approximately 10 GB of
RAM. The client machine is equipped with three graphics
cards (NVIDIA Quadro RTX 6000) and an Intel Xeon E5-
2687W v4 running at 3.0 GHz using less than 4 GB of
RAM and performs rendering for up to three collocated
participants in parallel.

The evaluation was performed with client rendering res-
olutions of stereoscopic 4096 x 2160 pixels and a projection-
based multi-user 3D display [38] of 3 x 2 meters size.
Head and camera tracking were performed with an optical
tracking system from ART (ar-tracking.com). The occluder
buffers were rendered with a resolution of 1366 x 720
pixels per eye and conservatively downsampled [41] to a
resolution of 256 x 144 pixels. The global scene server,
the rendering client and the occluder generator are imple-
mented as Avango/Guacamole [15] applications, whereas
the 3D reconstruction server is implemented as a standalone
OpenGL application.

5.2 Test Scenarios

We evaluated our output-sensitive telepresence architecture
in two scenarios using virtual participants. The first scenario
(One-to-Two) simulates a telepresence meeting between one
local participant and a group consisting of two remote
participants. The second scenario (Three-to-Two) simulates
three local and two remote participants.

In the One-To-Two scenario, we positioned the local
participant at 1.60 m in front of the screen with an eye

Fig. 10: Our Three-to-Two Scenario: Three collocated telepres-
ence participants meet two remote participants in a shared
virtual scene. Due to the size of the multi-user 3D display,
the local participants see similar perspectives of the remote
participants’” 3D video avatars and the scene. Note that the
photo camera assumes the role of a third local participant.
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Fig. 11: Snapshots of the four telepresence situations we used in our evaluation rendered from the perspective of a local participant.
From left to right: The remote avatars are extremely minified and partially occluded, minified and increasingly becoming larger,
partially out of frustum and partially occluded. Please also refer to the video figure. The numbers below the images indicate
the amount of extracted triangles and bit rates of the combined avatar geometry and texture streams at 60 Hz for our evaluated

reconstruction modes (1| II | IIT | IV ).

level at 1.75 m height and an eye distance of 6.5 cm. In
the Three-to-Two scenario, the two additional participants
were positioned one meter to the left and right of the first
scenario’s participant (Figure 10).

To increase reproducibility and consistency of our eval-
uation, we pre-recorded four sequences of two volunteers
acting as remote participants using our 3D capturing sys-
tem. We streamed the pre-recorded RGBD image sequences
from hard disk over network to our 3D reconstruction server
at a frame rate of 30 Hz, thus, simulating live capturing of
remote participants. Note that, although the RGBD streams
are captured at 30 Hz, our 3D reconstruction server creates
and streams avatars at a frequency of 60 Hz to the rendering
client to account for 3D display at 60 Hz as well as changing
viewing perspectives.

As basis for our virtual environment we used the pub-
licly available Sponza model and placed a lion statue as an
additional large occluder in the middle of the hall.

Our emphasis is on different situations where avatars are
minified, partially occluded, partially outside of the viewing
frustum, or combinations of these (Figure 11). We used key-
frame animation for navigating the remote avatars through
the virtual scene and evaluated both telepresence scenarios
for four different situations, each taking 10 seconds. Please
also refer to the video figure.

5.3 Influence of Reconstruction Modes

We created four different reconstruction modes as com-
binations of Back-face Culling (BFC), Frustum Culling (FC),
Occlusion Culling (OC) and Level-of-Detail Geometry Extraction
(LOD) and measured their influence on the performance of
our system for the One-to-Two scenario in comparison to the
baseline, where avatars are created without our feedback
mechanism. The modes evaluated are:

I Baseline, nothing enabled
II BFC + FC

III BFC + FC + OC

IV BFC + FC + OC + LOD

In the following, we present results for the four different
evaluation sequences (Figure 11) with a focus on the 3D
reconstruction time (Figures 12a), the number of generated
triangles (Figure 12b) and the round-trip time (Figure 12c).

5.3.1 3D Reconstruction Time

The performance of the 3D reconstruction process is il-
lustrated in Figure 12a. The baseline group avatar causes
3D reconstruction times between 6 and 7 ms in all four
sequences. Enabling backface and frustum culling (mode II)
already discards approximately 50 percent of the geometry
and texture information, yielding a performance gain of
1 to 2 ms in comparison to the baseline.

In sequence (D the lower part of the avatars is oc-
cluded by the balcony which saves 1 to 2 milliseconds of
reconstruction time when occlusion culling (mode III) is
enabled. With level-of-detail for geometry and texturing
enabled (mode IV) 3D reconstruction takes only 2 to 2.5 ms
for sequence (D.In sequence (2) the avatars approach the
local participant, hence, the geometric level-of-detail reaches
full resolution and 3D reconstruction times increases from
2.5 to 4.5 ms, which is similar to using frustum and backface
culling (mode II) alone.

In sequence () the three reconstruction modes benefit
from our proposed feedback mechanism (II-IV) and perform
similarly, since frustum culling can be applied effectively.
In this situation, reconstruction times can be reduced by
30 to 39 percent in comparison to the baseline.

Finally, in sequence (@) the remote avatars meet with the
local participants around a lion statue which acts as a large
occluder. Consequently, the group avatar is largely occluded
(Figure 11d) and the reconstruction server achieves similar
performance gains for reconstruction modes IIl and IV as in
sequence (3.

5.3.2 Number of Generated Triangles

Subfigure 12b exposes similar patterns as reported pre-
viously, since the number of generated triangles and the
reconstruction time are correlated. Note, that the orange and
yellow graphs are slightly offset to avoid overplotting.

It is worth noticing that at the beginning and at the end
of sequence (D the avatars are entirely occluded by either
the balcony or the wall. For these extreme cases no avatar
data is created, whereas in the middle of the sequence the
reconstruction process creates a very low-resolution avatar
resulting in only a few thousands triangles in mode IV.

The reduction of geometry and texture resolution due to
our level-of-detail approach might slightly change the ap-
pearance of the avatars. For this reason, we performed quan-
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(c) Round-trip times for different reconstruction modes.
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Fig. 12: Comparison of the influence of our different recon-
struction modes for the One-to-Two scenario. Compared to the
baseline (black) we benefit from backface culling (yellow to
red) in all four sequences. In addition, in sequences @D and
@ level-of-detail extraction is effectively applied (red), because
the group avatar is minified. In sequence (@) frustum culling
is effective (yellow to red), because the avatars are partially
outside of the viewing frustum in a face-to-face scenario. In
sequence @ occlusion culling (orange & red) becomes effective
because the avatars are partially hidden behind the lion statue.

titative measurements of the perceptual difference between
keyframes throughout our evaluation sequences using the
structural similarity (SSIM) [42] measure. The observed
SSIM values between 0.997 and 1.0 confirm that differences
between the output-sensitive avatars and their full resolu-
tion counterpart would be difficult to notice which is in
conformity with our observation.

5.3.3 Round-Trip Time

Figure 12c illustrates the round-trip times measured for
the reconstruction modes using our feedback mechanism

Avatar Reconstruction Times per Stage

3D Reconstruction Time in ms

— LOD Estimation
& Box Division

Frustum
Culling

Frustum &
Occlusion Culling
Pre-Blended
Texture Generation

Texture
Processing

Geometry

= Integration N
9 Extraction

Fig. 13: Reconstruction times for different reconstruction modes
(I-IV) averaged over evaluation sequences (D—(@. The small
avatar size in (D leads to the integration of a smaller sub volume
of the TSDF volume and thus to faster integration as well as
strongly reduced texture atlas generation times. The visibility
culling methods notably decrease the integration and geometry
extraction time due to exclusion of occupied but invisible bricks
for the group in sequences 3) and @.

in comparison to the baseline. The round-trip time includes
sending feedback from the remote client, receiving feedback
at the local reconstruction server, executing the 3D recon-
struction pipeline, upload of avatar data from GPU to CPU,
compression, sending avatar data over network, receiving
data on the client side and decompressing the data.

We are aware that round-trip times are typically between
5 and 30 ms between cities in Europe!. Since our tests
were performed in a local area network, the basic network
round-trip time has to be added to our measurements for an
estimate of the total round-trip time.

Our measurements reveal round-trip times between
103 to 146 ms for the baseline condition in all tested se-
quences. Using our approach for 3D reconstruction (mode
IV) round-trip times are reduced to 15 to 68 ms depending
on the amount of extracted geometry.

Although the 3D reconstruction requires less than 5 ms,
the round-trip times are higher in our system since several
stages are pipelined and asynchronous to the reconstruction
itself, i.e. GPU to CPU upload, compression on the server
side and decompression on the client side. However, it is im-
portant to emphasize that all pipelined stages benefit from
our proposed feedback mechanism, because we generate
significantly less data compared to the baseline.

5.3.4 3D Reconstruction Components Performance

Reconstruction times are greatly reduced in any of the four
evaluated sequences using our proposed feedback mecha-
nisms. For a more detailed analysis, Figure 13 summarizes
the average processing times of the different components
used in our reconstruction module.

In the baseline condition (mode I), most time is spent
on texture processing. Working on four 2560 x 1440 pixel

1. https:/ /wondernetwork.com/pings/Frankfurt
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color streams causes both texture stages together to account
for 68 to 69 percent of the total 3D reconstruction time.
Therefore, it is crucial to reduce the amount of potentially
visible texture information during processing.

The texture preprocessing stage benefits from our level-
of-detail mechanism. Early filtering and downsampling al-
lows for texture processing time reduction by 49 percent in
case of strong minification (Sequence (1)) and on average by
36 percent in case of moderate minification (Sequence 2)).
Although texture filtering is not fully optimized in our
GPU implementation, an ideal system could apply texture
downsampling directly within the RGBD sensor.

Moreover, all subsequent processing stages sufficiently
benefit from our visibility culling techniques and achieve
a significant speedup. As an example, processing time for
TSDF integration can be reduced by 44 to 59 percent in
situations where geometric level-of-detail extraction is ef-
fective and by 28 to 35 percent in situations where avatars
have to be extracted at full level-of-detail. For the integration
and geometry extraction stage we expect a higher gain from
identifying invisible bricks for increasing TSDF volume and
depth stream resolutions. Nevertheless, we already observe
a notable performance gain of 45 to 71 percent in our
evaluation sequences for the geometry extraction stage.

Finally, the amount of triangles retrieved from the ge-
ometry extraction stage yields proportional work load in
the pre-blended texture atlas generation stage. Depending
on the sequence, the time for texture blending and atlas
generation can be reduced by 55 to 82 percent.

5.4 Group Feedback versus Individual Feedback

We evaluate the efficiency of our proposed group feedback
(cmp. Figure 3) in comparison to the individual feedback mode
in the Three-to-Two scenario.

We compared three different feedback configurations:
three telepresence clients sending individual feedback for the
participants (dashed light-blue graph), one client sending
group feedback (solid dark-blue graph) and a client sending
no feedback at all (black graphs) as our baseline. During our
evaluation (see Figure 14), we measure notable reduction
of bit rates between 52 to 96 percent and reduction of pure
avatar draw time between 43 to 90 percent depending on the
sequence with no or little overhead to a theoretical optimum
a single user providing feedback could achieve. The only
scenario, in which the overhead of the group feedback is no-
table with respect to a theoretical optimum of an individual
user is in (@. Here, the occluder buffers are highly different
for the three participants in the group, because of the close
proximity of the lion statue. Nevertheless, the overhead of
the group feedback is still approximately 160 percent lower
than the overhead created by sending individual feedback
and therefore receiving three individual avatars (red graph).

In summary, our evaluation reveals that providing group
feedback is clearly more efficient than providing individual
feedback or no feedback at all for a group of collocated
participants.

5.5 Scalability

We evaluated our architecture in a One-to-Two and a Three-
to-Two scenario using a 3D capturing system consisting of
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(a) Bit rates for different feedback modes for 60 Hz avatar
transmission.
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(b) Draw times for different feedback modes. Scene-only
draw time in ms: ) 8.5, (2 8.6, 3 8.7, @ 9.2 (orange lines)
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Fig. 14: Overhead of group versus individual feedback for bit rates
and scene draw times. The graphs show a slight overhead of
the group feedback compared to the individual feedback of a
central user. However, compared to the baseline condition and
the sum of individual feedback, our proposed group feedback
proves to be effective in most cases.

four RGBD sensors. In this section we briefly discuss how
our architecture scales with respect to the number of RGBD
sensors, telepresence parties, and participants per party.

In our 3D reconstruction pipeline only the texture pro-
cessing, occupancy tracking and TSDF integration stages are
influenced directly by the number of RGBD sensors. Conse-
quently, the reconstruction time increases linearly for these
stages if additional sensors are added to a 3D capturing
system. However, texture processing could be performed in
parallel for all sensors using additional GPUs.

Both the costs for the occluder generation process as
well as the combined frustum and occlusion culling stage
scale linearly with the number of telepresence participants
in a remote party for which the avatar representations of
a local party are generated. The number of participants in
a telepresence party typically increases the reconstructed
surface area of the avatar. If each participant is fully visible
to the capturing system, the TSDF processing costs increase
linearly with the number of participants.

Besides reconstruction performance, network capacity
remains a limiting factor for an increasing number of telep-
resence parties. In situations where multiple parties meet,
our system already reduces network transfer rates for many
meeting configurations, since individual user representa-
tions are often reconstructed at lower detail or are only
partially visible Furthermore, we are also able to reduce the
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level-of-detail for the avatar geometry and texture to trade
network bandwidth for avatar quality.

6 CONCLUSION AND FUTURE WORK

We present the idea of creating, transferring and render-
ing output-sensitive 3D video avatars in multi-party 3D
telepresence systems. Our 3D reconstruction process con-
siders projected screen area, scene occlusion and viewing
frustum parameters of groups of remote participants to
avoid the creation of avatar geometry and textures that are
invisible. This is made possible by adjusting the resolution
of the TSDF volume and the color textures in real-time,
and using a brick-based data structure that accumulates
the visibility information and guides the TSDF extraction
process accordingly. The color textures are pre-blended and
masked to represent and transmit each visible texel only
once. As a result, the output-sensitive avatar is represented
by significantly less geometry and texture information, usu-
ally by at least 50 percent. In cases where the avatar is
largely occluded, outside of the participants” viewing frusta,
or extremely minified, our approach creates and transmits
barely any data. In our evaluation sequences, we achieve
3D reconstruction time reductions of up to two thirds and
by 50 percent on average, as well as avatar rendering time
reductions between 43 and 90 percent throughout. Most
importantly for telepresence applications in an environment
with low network bandwidth, we achieve a bit rate reduc-
tion of 77 percent on average, and at least 51 percent at
any point in our evaluation scenarios. Our output-sensitive
avatar creation can be applied to any reconstruction ap-
proach that extracts the final avatar from a TSDF volume
[4], [5], and the general idea of output-sensitive avatar
reconstruction, compression and transmission is compatible
with most immersive telepresence systems.

The scalability of our approach is limited since the work-
load of a reconstruction server depends on the number of re-
mote telepresence parties taking part in the communication.
While typical telepresence scenarios involve only a small
number of parties, a larger number could be supported by
using personalized model-based representations (e.g. [43])
for avatars that are only seen from a larger distance. How-
ever, imperceptible switching between a live reconstructed
3D video avatar and the model-based representation might
be a challenge. A promising extension of our proposed
group feedback would be dynamic clustering of remote
telepresence parties into clusters that share similar viewing
perspectives into the virtual world. As a result, the recon-
struction server would create avatar representations based
on the merged feedback of several groups, and therefore
execute the reconstruction pipeline only once per cluster,
before broadcasting the result to the cluster.

It is our vision that 3D telepresence will become a
standard communication modality. However, bandwidth is
and will remain a limited resource in the foreseeable future.
Furthermore, considering the increasing resolution of 3D
sensors and 3D displays, output-sensitive video avatars are
a sustainable contribution to making high quality immersive
3D telepresence communication a reality, since they avoid
reconstructing, transferring and rendering information not
contributing to the final image of any participant.
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