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Figure 1: Calibration and registration results of our proposed calibration method visualized with the real-time 3D reconstruction from [3]: (a)
without and (b) with our calibration applied. (c) - (e) Two overlapping Kinect V2 sensors are positioned at an angle of about 90 degrees, about 45
degrees left and right of the user and the checkerboard. The achieved accuracy of our volumetric calibration allows for precise matching of the
sensor contributions as well as a precise registration into a joint coordinate system. (a) - (c) The rgb-colored coordinate system is tracked with
our calibrated multi-Kinect-V2 setup and precisely coincides ((b) and (c)) with the magenta coordinate system which is tracked with an optical
tracking system [1] – our joint coordinate system.

ABSTRACT

We present an integrated approach for the calibration and regis-
tration of color and depth (RGBD) sensors into a joint coordinate
system. Our application domain is 3D telepresence where users
in front of a three-dimensional display need to be captured from
all directions. The captured data is used to virtually reconstruct
the group of people at a remote location. One key requirement
of such applications is that contributions from different color and
depth cameras match, as closely as possible, in spatially overlap-
ping or adjacent regions. Our method employs a tracked checker-
board to establish a number of correspondences between positions
in color and depth camera space and in world space. These corre-
spondences are used to construct a single calibration and registra-
tion volume per RGBD sensor which maps raw depth sensor values
in a single step into a joint coordinate system and to their associated
color values. This approach considerably reduces reconstruction
latency by omitting expensive image rectification processes during
runtime. Furthermore, our evaluation demonstrates a high measure-
ment accuracy with an average 3D error below 3 mm and an aver-
age texture deviation smaller than 0.5 pixels for a space of about
1.5 m x 1.8 m x 1.5 m.

Keywords: Telepresence, 3D capturing, camera calibration, regis-
tration, depth camera, Kinect.

1 INTRODUCTION

3D capturing systems are used in many interactive applications in
order to serve as a basis for real-time 3D reconstruction of humans,
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pose estimation, 3D user interfaces, skeleton tracking, or more gen-
eral 3D measuring tasks. Our application domain is immersive 3D
telepresence, which has been a research topic for more than 20
years [9]. While early work relied on a set of color cameras for
capturing users in 3D (e.g. [9, 13]), the recent availability of in-
creasingly better, inexpensive depth and color (RGBD) sensors has
revived interest in this topic (e.g. [15, 4, 3]). Fuchs [10] states that
the main challenges for 3D telepresence remain in the field of 3D
displays and the acquisition and reconstruction of the participants.
Basic requirements for the latter tasks are low latency processing
and transmission of the depth and color cameras’ RGBD values
and their accurate mapping into an application’s world coordinate
system.

We developed a volumetric calibration and registration approach
which directly maps raw depth sensor values to 3D positions in
world space and to their corresponding texture coordinates of the
associated color camera image. A tracked checkerboard is placed
at various positions in our capturing volume to establish correspon-
dences between raw depth values of an RGBD sensor and the asso-
ciated positions in world space. A depth camera’s infrared image of
the checkerboard is used to also establish correspondences between
the raw depth values and the texture coordinates of the associated
color camera. These correspondences are entered into a 3D lookup
table of a typical size of 128× 128× 256. Empty cells are filled
by scattered data interpolation. This process is performed once for
each RGBD sensor. During runtime, this 3D lookup table can be
used on the CPU or GPU to directly map the raw depth values to
3D positions in world space, whereas the color information is re-
trieved through the looked-up texture coordinates.

In virtual reality systems, optical tracking systems are often em-
ployed to track the users’ head and hand positions or even more
body parts. The tracking system’s coordinate system and the world
coordinate system of the application are typically linked together by
a rigid body transformation. Thus, the tracking system’s accuracy
–or inaccuracy– is inevitably transferred into the application. As a
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Table 1: Comparison of characteristics of state-of-the-art multi-sensor calibration methods. Intrinsic relates to the identification of intrinsic
parameters of the color and depth sensor. Depth calibration relates to an explicit correction of the sensors’ depth measurements. Extrinsic
relates to the calibration between the involved depth and color sensors. Registration relates to whether multiple RGBD-sensors are externally
registered to a (joint) reference coordinate system or in a camera-to-camera fashion (inter-camera). Geometric preservation relates to the ability
to preserve shapes, lengths, and angles of the captured scene geometry.

Method Intrinsic Depth calibration Extrinsic Registration Geometric preservation
Maimone et al. [15] optical none optical reference no
Maimone et al. [16] optical none optical reference + inter-camera no

Kainz et al. [12] optical none optical reference + inter-camera no
Beck et al. [3] optical yes optical reference yes
Deng et al. [8] optical none optical + geometric inter-camera no

Avetisyan et al. [2] optical yes optical reference yes
Our simultaneous optical + geometric color and depth calibration to a joint reference yes

consequence, even a precisely calibrated RGBD-sensor cannot be
mapped into the application’s coordinate system by a simple rigid
body transformation. In fact, absolute accuracy is less important.
More important is that the contributions of different RGBD sensors
are precisely registered into the tracking space so that they match,
as closely as possible, in spatially overlapping or adjacent regions
of a captured object. In our approach, this is ensured by using the
optical tracking system as a reference for acquiring the correspon-
dences between depth camera space and a virtual world coordinate
system for all involved depth sensors. The spatially varying cor-
respondences of the associated color image to the depth image is
captured by the 3D lookup table, as well, which leads to smooth
transitions along seams where contributions of multiple RGBD sen-
sors are blended or stitched together.

The main properties of our novel approach are

• a low-latency single-step mapping of raw depth sensor values
to positions in world space and to texture coordinates in an
associated color image,

• no reliance on any specific lens or camera model and
• an accuracy close to the resolution of the sensors throughout

the capturing area.

We compare our approach to the state-of-the art calibration method
described by Beck et al. [3] which reveals significant improve-
ments in accuracy. Furthermore, we evaluated different scattered
data interpolation approaches for constructing the 3D lookup table
and recommend the use of natural neighbor interpolation.

2 RELATED WORK

The Microsoft Kinect is one of the most popular RGBD-sensors.
It is used in many applications, either to serve as an input device
or as a 3D capturing device. While the Kinect’s depth and color
sensor are integrated into a single device, it is also possible to com-
bine a color camera with a pure depth sensor like the Asus Xtion
Pro™, or time-of-flight sensors like the CamCube™. Regardless
of which type of sensor is used, its calibration involves the iden-
tification of all parameters of an underlying projection model. In
particular, the camera’s intrinsic parameters, which describe its pro-
jection and rectification model, have to be identified. The intrinsic
parameters of Zhang’s [19] established calibration model consist
of the camera’s principal point, focal length, and coefficients for
radial and tangential distortion. In addition, the depth sensor it-
self either reports disparity values at each pixel, which then have
to be converted by a parameterized function or an explicit mapping
to metric distance, or metric values, depending on its underlying
technology. For most applications, a rigid body transformation that
defines the relation between the color and depth reference frame,

has to be identified, too, which is often termed as extrinsic calibra-
tion in literature. Raposo et al. [17] give a detailed definition of all
involved parameters and the camera’s projection model. Although
the parameters are factory pre-calibrated, the accuracy is limited
and improvements have been investigated [18, 11, 20].

State-of-the-art camera calibration methods are based on captur-
ing a planar checkerboard for several poses and using the detected
checkerboard crossing points to find the camera’s intrinsic parame-
ters [19]. Herrera et al. [11] presented a depth distortion model for
the Kinect sensor and an algorithm that jointly calibrates the color
and depth camera. They show that their method yields higher ac-
curacy than separately calibrating the color and depth sensor. Ra-
poso et al. [17] improved the joint calibration method of [11] by
replacing the refinement step of the initial calibration guess with a
non-linear optimization. Their method further improves accuracy
and results in a speed-up of the process since it relies on fewer ref-
erence images.

While the aforementioned methods mostly focus on the calibra-
tion of a single sensor, various solutions for the specific challenge
of calibrating 3D capturing systems have been investigated more
recently [15, 16, 12]. Capturing typically requires the use of multi-
ple RGBD sensors. Therefore a large set of matching intrinsic and
extrinsic parameters need to be identified.

In 2011 Maimone et al. [15] introduced a telepresence system
that uses an array of Kinects for 3D capturing people and a sur-
rounding scene in real time. Their system was not designed for ac-
curacy in terms of 3D reconstruction but rather for perceived visual
quality. In order to match the contributions from overlapping sen-
sors, they proposed a quality-based fusion model for a screen space-
based merging process which incorporates the depth measurement
error that increases with distance. As a result, their method ensures
that the depth camera contributions with the highest available accu-
racy are blended and displayed. In their evaluation, they measured a
3D positional error of around 1.8 cm at a distance 0.7 m and about
3 cm at a distance of 1.8 m from the cameras, which was mainly
caused by the depth sensors’ inaccurate distance measurements.

In order to improve the 3D matching of several sensors through-
out a larger capturing space, Maimone et al. [16] proposed an inter-
camera-based calibration method. They placed a calibration target
at several positions inside the capturing space to obtain a set of 3D
correspondences which were then used to fit an affine transform
for each sensor that minimized the distances between the measured
correspondences. As a result, they were able to reduce the 3D po-
sitional error from about 3 cm to about 1cm. In 2012 Kainz et al.
[12] presented a similar approach to registering a setup consisting
of multiple Kinects. Like [16] they simultaneously captured a cal-
ibration sphere from all involved depth cameras to obtain a set of
3D correspondences. For each Kinect, they fit a three-dimensional
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Figure 2: Overview of our proposed method: (a) We transform the depth sensor space D into a normalized calibration volume space V . Every
point v ∈ V maps to a point p in our joint coordinate system W and to a coordinate c in the sensor’s color texture space C. In the first step, the
calibration volume is initialized at each voxel with values p̃ ∈W and c̃ ∈C. These values are computed from an initial calibration ϒ of the sensor.
At this point the volume is a valid mapping with the accuracy of the initial calibration. The central idea of our method is to correct the calibration
volume based on a set of references {R} which we sample at the crossing points of a tracked checkerboard as depicted in (b). For each reference
ri ∈ {R} its texture coordinate cr ∈ C in the sensor’s color image is detected and its normalized volume coordinate vr ∈ V is computed using z
from the depth and x,y from infrared image of the sensor. The tracking system monitors the checkerboard and reports the measured 3D world
position pr ∈W of ri. For each ri the offsets δp and δc are computed and stored. (c) Calibration is performed by taking references at various
checkerboard locations in our area of interest. Note that the volume is not updated in this phase. (d) In a final interpolation phase the volume is
locally corrected at each voxel based on the offsets at its neighbors in {R}. (e) During runtime, a point p ∈W is reported by, e.g., two sensors to
be at local positions di ∈Di and d j ∈D j. The correct location of p can be reconstructed from both sensors by lookups in their calibration volumes.

polynomial function to the correspondences, which was used to
map depth values to world space positions at runtime. However,
they did not provide any quantitative results.

Beck et al. [3] suggested a volumetric approach for the metric
correction of individual depth sensors. They used an optical track-
ing system as a reference to obtain a mapping from a sensor’s raw
depth values to metric values. Their method significantly improved
the depth measuring accuracy compared to the standard approach
for raw depth-to-meter conversion. The registration of the sensors
into a global reference system was achieved by a geometric regis-
tration using a custom box-shaped tracked calibration target. How-
ever, the overall registration of multiple depth sensor contributions
was still not perfect throughout the volume of interest. In particular,
using only a single rigid body transform for the extrinsic registra-
tion per sensor produces good results in some areas, whereas in
other areas the contributions match poorly. Deng et al. [8] sug-
gested a smooth field of rigid transforms to improve on this. Their
method is able to pairwise match RGBD-sensors. They first capture
a set of correspondences at different locations in the scene using a
checkerboard that is simultaneously seen by two sensors. Based
on these correspondences, they construct a 3D grid of rigid trans-
forms which is then used to locally interpolate transformations dur-
ing runtime. As a result, the video textures, as well as the captured
3D scene for two or more Kinects, matches with higher accuracy
compared to methods which only use a single rigid transform per
camera.

However, the limitations of inter-camera based approaches as
presented by [16, 12, 8] are that at least two sensors have to over-
lap and that the registration results in small geometrical distortions
of the captured scene. Our approach preserves geometrical consis-
tency by an implicit correction of the depth sensors metric measure-
ment and, as we register each RGBD-sensor individually into a joint
reference coordinate system, the sensors do not have to overlap.

More recently, Avetisyan et al. [2] presented an approach for
depth sensor calibration to overcome depth measurement inaccu-
racies. The depth calibration is performed by sweeping a tracked
checkerboard through the capturing space in front of the sensors
and constructing a 3D look up table that maps depth values identi-
fied at the checkerboard crossing points to metric distances which
are measured by an optical tracking system. Their method achieves
a slightly better metric depth accuracy than the similar approach
by [3] (0.8-1.2 cm vs. 1-2 cm). However, the extrinsic calibration
(relation between color and depth), as well as the registration to an
external reference system, is achieved by a single rigid transform.

Therefore, their proposed method might still contain the problem of
varying fusion quality throughout a larger capturing volume. To ad-
dress the problem of varying fusion quality, our approach performs
the calibration of intrinsic parameters and the external registration
as an integrated process which ensures the best possible fusion of
multiple contributions throughout a large capturing space.

A more general limitation of depth correction approaches like
[3, 2], which are based on sweeping, is the missing synchronizing
between the depth sensor and the tracking system. This can lead to
interferences between the different sampling processes and, there-
fore, inaccuracies in the depth calibration. We therefore prefer a
calibration method that operates with a static target.

Table 1 shows a comparison of the characteristics of the methods
that are most related to our work. All these methods focus on the
registration of multiple RGBD-sensors and aim for a perfect fusion
of multiple RGBD-sensors throughout a large capturing volume.
While most methods either apply an explicit depth calibration or
use an inter-camera approach, they all depend on the accuracy of a
large set of interdependent and error-prone parameters. In contrast,
our integrated process makes the resulting calibration independent
of any specific lens or camera model and it is independent of the real
type of involved distortions. We are convinced that 3D capturing
systems, as well as 3D skeleton tracking systems, can benefit from
the accuracy and simplicity of our calibration method.

3 CALIBRATION METHOD

Notations: Our method uses several coordinate systems: The 3D
joint world coordinate system W in Euclidean space where all sen-
sors will be calibrated and registered to. The 3D depth sensor coor-
dinate system D with (x,y) image coordinates and the sensors z co-
ordinate and its corresponding reference frame in Euclidean space
D′. The 2D color camera coordinate system C and its corresponding
reference frame in Euclidean space C′. A normalized 3D volume
space V where our calibration is performed.

We start from an initial calibration ϒ of an RGBD-sensor. ϒ

is defined by the intrinsic and extrinsic parameters of the sensor
and the rigid transformation that maps from the 3D depth reference
frame D′ to the 3D color reference frame C′. Suppose that ϒ is
calibrated such that the captured values from depth space D are
registered to a joint coordinate system W . We are now interested
in the accuracy of ϒ and measure it as follows: A tracking system
monitors the 3D position of a tracked checkerboard and its crossing
points in W . The crossing points can also be detected in the sensor’s
color space C and depth space D, using the infrared image that is
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provided by the sensor. For a single crossing point, we then know
its correct position p ∈W , c ∈ C and d ∈ D. If we compute the
location of the same crossing point that is located at d using ϒ its
positions, we will end up at a slightly different location p̃ and c̃. The
difference δp between p and p̃, as well as the difference δc between
c and c̃, is caused by the inaccuracy of ϒ. In particular, δp and δc
define the local error of ϒ at the corresponding value d.

By sampling a set of references R at different locations in W , we
are able to locally correct ϒ and obtain our new calibration Ω. The
correction of ϒ is performed by an interpolation step in normalized
volume space V , which we denominate calibration volume. In sum-
mary, our proposed calibration method involves the following steps
(cf. Figure 2):

1. Computation of an initial calibration ϒ

2. Initialization of the calibration volume
3. Reference sampling of R at multiple locations
4. Correction of the calibration volume based on interpolation

In the following sections, we will describe the above steps in
detail.

3.1 Initial Calibration
The intrinsic parameters of the sensor’s color and depth camera
are computed using OpenCV [6]. The extrinsic calibration TD′→W
which registers the sensor into our joint coordinate system W is
computed using the algorithm and the reference calibration cube
from [3].

With ϒ we can compute the position p̃ for each value d by first
computing its position d′ in the 3D reference frame of the depth
sensor:

d′x = dz ·
dx− pdx

fdx

d′y = dz ·
dy− pdy

fdy

d′z = dz (1)

where fd is the focal length and pd the principal point of the depth
camera. d′ is then transformed by TD′→W resulting in:

p̃ = TD′→W ·d′ (2)

In addition, the texture coordinate c̃ can be computed by, first trans-
forming d′ into the 3D color camera reference frame:

c′ = TD′→C ·d′ (3)

then c̃ is obtained computing:

c̃u = pcx +
fcx · c′x

c′z

c̃v = pcy +
fcy · c′y

c′z
(4)

where fc is the focal length and pc the principal point of the color
camera.

3.2 Calibration Volume
As our calibration is performed in volume space, we transform the
depth sensor reference space D into a normalized volume space V
having its origin at the lower left front crossing point. The x,y co-
ordinates are normalized in relation to the width and height of the

(a)

vj vj

vk vk

(b)

Figure 3: Illustration of the interpolation at a voxel v j ∈ V , the ref-
erence set R is shown in purple. (a) For IDW the offsets from
the marked 5 nearest references are interpolated. The weights
are defined by the inverse distances. (b) For NNI the correspond-
ing Voronoi-diagram is depicted. The weights are schematically il-
lustrated by the intensity of the color of the (temporary) Voronoi-
subcells. Note that, for a voxel vk ∈ V , which is outside the convex
hull of R, IDW extrapolates from its neighbors, illustrated by dashed
arrows. In contrast NNI is not defined at voxel vk ∈V .

depth image. The z component (the raw depth) is normalized to a
range inside the near and far plane of the sensor:

znorm =
z− snear

s f ar− snear
(5)

We now initialize the calibration volume based on the initial cal-
ibration ϒ. For every voxel v ∈ V we compute its position p̃ using
(1) and (2) and the corresponding texture coordinate c̃ using (3) and
(4). At this point the calibration volume is a valid mapping with the
accuracy of ϒ. A lookup of a position p̃ or a texture coordinate
c̃ can be performed by a tri-linear interpolation in the calibration
volume. We denote these lookups as ϒW (v) and ϒC(v).

The size of the calibration volume can be asymmetric, corre-
sponding the higher resolution of the depth sensor. For example,
we have chosen a size of 128×128×256.

3.3 Reference Sampling

Reference sampling is performed by placing a tracked checkerboard
at different locations in the area of interest inside the camera frus-
tum of the sensor. In this phase the rectification of the sensor images
is ignored because our method implicitly compensates the image
distortions inside the calibration volume. For a reference sample
ri ∈V ×W ×C, the texture coordinate cr ∈C of the actual checker-
board crossing point is detected in the sensor’s color image and its
volume coordinate vr ∈V is computed using the normalized z from
the depth and x,y from the detected checkerboard crossing point of
the infrared image. The tracking system monitors the checkerboard
and reports the measured reference pr ∈W . In summary, a refer-
ence sample ri consists of the correction tuple (vr,δp,δc)i with:

δp = pr−ϒW (vr)

δc = cr−ϒC(vr) (6)

As a result of the sampling step, we obtain a set R which then
becomes the input for the interpolation of the calibration volume.
Note that, at the moment of sampling the image frames of the sen-
sor and the tracking system, the checkerboard must not move. We
furthermore reduce noise in the measurements of the sensors by fil-
tering and averaging the acquired values over a period of 30 frames.
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3.4 Interpolation
The purpose of this step is to correct the calibration volume (mean-
ing p̃ and c̃) at each voxel v ∈ V by interpolating the offsets from
references in the local neighborhood of R. The type of interpolation
in our case is a problem similar to scattered data interpolation. After
the interpolation, the calibration volume contains our new calibra-
tion Ω with a higher accuracy compared to ϒ. The method operates
on individual voxels one after another.

In the following, we denote a voxel which is corrected as v j . The
position ϒW (v j) and texture coordinate ϒC(v j) at v j are corrected
by interpolating the offsets (δp,δc)i ∈ R to:

δpcorrection =
1

∑
k
i=1 Φ(vri)

·
k

∑
i=1

Φ(vri) ·δpi , (7)

and

δccorrection =
1

∑
k
i=1 Φ(vri)

·
k

∑
i=1

Φ(vri) ·δci , (8)

with a weighting function Φ and a neighborhood of k reference
samples. Both, Φ and the neighborhood k depend on the interpola-
tion method. p̃ and c̃ are then corrected by adding the corresponding
interpolated offsets:

p̃ = p̃+δpcorrection

c̃ = c̃+δccorrection (9)

As a result, the calibration ϒ is corrected at voxel v j and the
calibration volume is updated.

We investigated two different interpolation methods, which both
address Φ and k: inverse distance weighting (IDW) and natural
neighbor interpolation (NNI). Figure 3 illustrates both schemes.
NNI is state-of-the-art in scattered data interpolation and it is known
to have C(1) property inside the convex hull of its underlying delau-
nay triangulation [14].

In a basic IDW interpolation, the neighborhood k is fixed and the
function ΦIDW computes the weight of each neighbor as the inverse
distance in normalized volume coordinates between the current
voxel v j and the reference ri ∈ R with correction tuple (vr,δp,δc)i:

ΦIDW (vri) =
1

distance(v j,vri)
(10)

Natural neighbor interpolation is based on the construction of
a Voronoi-diagram for the volume positions vri ∈ V from the set
R. For a detailed explanation of Voronoi space decomposition, we
refer to [14, 7]. The weight for each natural neighbor ri ∈ R of
a voxel v j is computed by temporarily inserting its position into
the Voronoi-diagram. This insertion leads to a new Voronoi-cell υ j
which covers a part the volume from each neighboring cell υri . Let
Θ be a function that computes the volume of a Voronoi-cell. The
weighting function ΦNNI then is:

ΦNNI(ri) =
Θ(υri)

Θ(υ j)
(11)

4 EVALUATION

Our evaluation was performed for the Microsoft Kinect V1 and the
developer release of the Microsoft Kinect V2, but our method also
applies to any combination of depth and color cameras which out-
puts an infrared image of the depth sensor. For a detailed specifica-
tion of the Kinect V1, we refer to the literature [18]. The depth sen-
sor of the Kinect V2 uses time-of-flight for depth measuring with
a resolution of 512× 424, a field of view of 70× 60 degrees, and

Figure 4: (left) The custom checkerboard with attached tracking
markers and the local coordinate system linked to them. The cross-
ing point distance is 7.5 cm. (right) Illustration of a small set of sub-
sequent reference samples (marked in purple). Per checkerboard
location, 35 reference samples are captured. In this example the in-
put sets would be Rdense = {A,B,C,D} and Rsparse = {A,C} and the
accuracy would be evaluated at intermediate checkerboard locations
forming the reference set Rm = {1,2,3,4}.

a depth precision of 14bit in the range of 0.5 to 4.5 meters. The
color camera is full HD, but we cropped the color image to a reso-
lution of 1280×1080 to match the field of view of the depth sensor.
We implemented our proposed method in C/C++ using OpenCV [6]
for checkerboard crossing point detection and CGAL [7] for natural
neighbor interpolation NNI and an alpha version of the open source
driver [5] for the Kinect V2. For reference measurements of the set
R, we used the tracking system from A.R.T. [1]. The accuracy of
the tracking system is in the range of 1-2 mm throughout a large
space of about 4 m x 3 m x 2.5 m. We used a checkerboard of size
7×5 crossing points which we printed onto a warp-resistant board
mounted on a custom stand (Figure 4 (left)). The initial calibration
for volume initialization was performed using the method described
in [3].

4.1 Evaluation Approach
We were interested in the accuracy of our calibration volume at
locations between the actual sample location used for generating
the volume. We also wanted to investigate the effect of sparse and
dense reference sampling. Therefore we split the set R after refer-
ence sampling into subsets grouped by board locations as follows:
Reference samples are inserted into the disjoint sets Rcalib and Rm,
alternating per board location. We evaluated the accuracy of the
calibration with a dense input set (Rdense = Rcalib) and a sparse set
Rsparse, a subset of Rdense. Reference samples in Rm are used for
evaluation only (Figure 4 (right)). The evaluation of the accuracy
of our calibration was performed in the following steps:

1. Initialization of the calibration volume.
2. Reference sampling of R.
3. Split of R into the sets Rdense and Rsparse as input for interpo-

lation and Rm for evaluation.
4. Correction of the calibration volume using interpolation

schemes NNI and IDW for different neighborhoods k.
5. Evaluation of the achieved accuracy at the references from

Rm.

5 RESULTS AND DISCUSSION

5.1 Calibration Accuracy
We measured the accuracy of our method and calibrated both
Kinect versions into our joint coordinate system. For the Kinect V1,
we applied the initial calibration with the method from [3]. For the
Kinect V2, we computed the initial calibration for the intrinsic cali-
bration using OpenCV [6] and the method from [3] for the extrinsic
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Table 2: Average absolute errors for the Kinect V1 in 3D world space
and 2D texture space compared to [3]; measured for Rm based on the
input sets Rdense and Rsparse for different interpolation schemes and
volume resolutions (upper row 64×64×128 lower row 128×128×256)
per method and row. For IDWk, only positions inside the convex hull
of the input set were evaluated. 3D errors are in mm, 2D errors in
texels, standard deviations in parentheses, and maximum errors in
brackets.

Method 3D dense 3D sparse 2D dense 2D sparse
Beck et al. [3] 12.8 (5.8)[35.6] - 1.8 (0.4)[4.0] -

IDW5
3.5 (2.2)[12.6] 4.1 (2.2)[12.8] 0.5 (0.3)[2.1] 0.5 (0.3)[2.0]
3.5 (2.1)[12.7] 3.9 (2.3)[12.7] 0.5 (0.3)[2.0] 0.5 (0.3)[2.0]

IDW10
3.4 (2.2)[12.3] 3.7 (2.3)[14.5] 0.5 (0.3)[2.1] 0.5 (0.3)[2.0]
3.4 (2.1)[12.3] 3.8 (2.3)[14.4] 0.5 (0.3)[2.0] 0.5 (0.3)[2.0]

IDW20
3.4 (2.2)[13.2] 3.9 (2.2)[14.0] 0.5 (0.3)[2.1] 0.5 (0.3)[2.1]
3.4 (2.2)[13.1] 3.8 (2.2)[13.8] 0.5 (0.3)[2.2] 0.5 (0.3)[2.0]

NNI
3.2 (2.1)[11.2] 3.5 (2.2)[13.8] 0.5 (0.3)[2.1] 0.5 (0.3)[2.0]
3.1 (2.1)[11.1] 3.6 (2.2)[13.7] 0.5 (0.3)[2.1] 0.5 (0.3)[2.0]

registration. The capturing volume was about 1.2 m x 1.8 m x 1.0 m
for the Kinect V1 and about 1.5 m x 1.8 m x 1.5 m for the Kinect
V2. Depending on the actual mounting of the sensors, the capturing
volumes differ, which is mainly due to the different fields of view
of the two Kinect versions. We took approximately 2000 reference
samples and divided these into Rm of size 1000, Rdense of size 1000
and Rsparse of size 500. We were interested in the errors in terms
of the absolute distance to the ground truth. For the 3D error the
ground truth is our tracking system and for the 2D error the ground
truth is the detected crossing point in image space at the reference
sample ri ∈ Rm. The average results for NNI, as well as IDW for
different neighborhoods k (5, 10 and 20) and for different resolu-
tions of the calibration volume, are listed in Table 2 for the Kinect
V1 and in Table 3 for the Kinect V2.

Our evaluation clearly shows that our method is able to signif-
icantly improve the calibration accuracy of the method from Beck
et al. [3] for the Kinect V1. Our method reduced the average abso-
lute 3D error from 12.8 mm to 3.1 mm and the average absolute 2D
error from 1.8 texel to 0.5 texel. The basic initial calibration of the
Kinect V2 resulted in relatively high errors compared to the initial
calibration of the Kinect V1. However, we were able to achieve
a very high accuracy with our calibration method. Note that the
quantitative error evaluation reported in [3] focused on the Kinect
V1’s z-error only whereas our evaluation is a distance measurement
in our joint 3D coordinate system. The relatively high 3D error of
12.8 mm for the method from [3] listed in Table 2 is mainly caused
by the rotation and translation inaccuracies due to the rigid body
transformation which registers a sensor into the application’s co-
ordinate system. In particular, using a single rigid body transform
per sensor is one of the main drawbacks of the calibration method
for the multi-sensor setup of [3]. In contrast, our proposed method
registers each sensor into the application’s coordinate system by a
3D-lookup.

It turns out that natural neighbor interpolation produces a much
higher accuracy than inverse distance weighted interpolation inside
the convex hull of R. In addition, the calibration benefits from the
C1 continuity of NNI. On the other hand, IDW can extrapolate val-
ues at voxels that lie outside the convex hull of R. For practical sce-
narios it is important that the capturing space is sampled as widely
and densely as possible. However, e.g. it is not always feasible tak-
ing reference samples near the borders of a sensor’s frustum and
close to the floor. A modified version of our interpolation phase
could blend between NNI and IDW at such critical borders. Fur-
thermore, our method scales with the density of the reference set
(Rdense vs. Rsparse) and with the resolution of the calibration vol-

Table 3: Average absolute errors for the Kinect V2 in 3D world space
and 2D texture space compared to a rough initial calibration; mea-
sured for Rm based on the input sets Rdense and Rsparse for different in-
terpolation schemes and volume resolutions (upper row 64×64×128
lower row 128×128×256) per method and row. For IDWk, only posi-
tions inside the convex hull of the input set were evaluated. 3D errors
are in mm, 2D errors in texels, standard deviations in parentheses,
and maximum errors in brackets.

Method 3D dense 3D sparse 2D dense 2D sparse
Initial 35.7 (13.0)[75.0] - 24.2 (1.0)[28.0] -

IDW5
3.2 (2.1)[14.0] 4.2 (2.9)[18.5] 0.3 (0.2)[1.1] 0.3 (0.2)[1.2]
3.2 (2.1)[13.6] 4.1 (2.9)[17.0] 0.3 (0.2)[1.9] 0.3 (0.2)[1.2]

IDW10
3.1 (2.0)[14.7] 4.3 (2.8)[16.0] 0.3 (0.2)[1.2] 0.3 (0.2)[1.2]
3.1 (2.1)[13.9] 4.2 (2.8)[15.8] 0.3 (0.2)[1.2] 0.3 (0.2)[1.2]

IDW20
3.0 (2.0)[17.7] 4.5 (2.7)[15.8] 0.3 (0.3)[5.0] 0.4 (0.2)[1.1]
3.0 (2.1)[16.5] 4.4 (2.8)[16.5] 0.3 (0.2)[1.0] 0.4 (0.2)[1.1]

NNI
1.7 (1.0)[5.0] 2.0 (1.2)[5.7] 0.2 (0.2)[1.5] 0.3 (0.2)[1.5]
1.7 (1.1)[5.8] 2.0 (1.3)[6.9] 0.2 (0.2)[1.3] 0.3 (0.2)[1.9]

ume. In our experiments we also tested additional volume sizes –
32×32×64 produced very poor results whereas a very dense vol-
ume of 256×256×512 did not further improve accuracy.

The most important part of our method is the reference sampling
step. First, it is critical in terms of synchronization. We therefore
ensure that all involved data streams (images, checkerboard target,
and tracked checkerboard pose) are stable. This is an important
difference to the sweeping approaches of [3, 2], because we avoid
artifacts due to interferences of the different sampling frequencies
and times. Second, good lighting conditions are critical for the ref-
erence sampling step because it relies on an accurate and stable
crossing point detection in the involved images. The crossing point
detection in the color image of both sensor types works well if ap-
propriate room lighting is ensured. The infrared image of the Kinect
V2 is generally also of sufficient quality. However, the infrared im-
age of the Kinect V1 sees the structured light pattern of its infrared
projector. In order to make the crossing point detection more reli-
able and stable, we apply a 5 x 5 median filter to the infrared image
as suggested by [2] (Figure 5).

The interpolation phase took about 2 minutes for the natural
neighbor interpolation and 3 to 6 minutes for the inverse distance
methods, depending on the volume resolution and number of neigh-
bors. The use of an acceleration structure for the neighbor search
could speed up this phase. Of course, the most time-consuming
part of our method is the reference sampling. For the Kinect
V1, it takes up to 30 minutes and for the Kinect V2, about 20
minutes to take enough samples for a capturing space of about
1.5 m x 1.8 m x 1.5 m. The difference is caused by the fact that
the driver is not able to simultaneously read infrared and depth
images from the Kinect V1, but rather has to switch between the
streams. The ideal case would be a sweeping-based reference sam-
pling phase. However, current hardware does not support synchro-
nization and the frame rates of the current RGBD-sensors are not
high enough to capture sharp images of a moving target.

5.2 Dense Reference Sampling
It is obvious that our method depends on the density of the ac-
quired reference samples. We sampled a very dense sequence of
checkerboard locations in order to find an upper limit of the accu-
racy for our method. We set the size of our calibration volume to
128× 128× 256 and sampled a distance range of about 0.9 m to
2.1 m in front of the Kinect V1 and of about 0.9 m to 2.4 m in front
of the Kinect V2. The subsequent board locations had a distance
of about 5 cm and we captured 800 samples for the Kinect V1 and
1000 samples for the Kinect V2. The evaluation was performed
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(a) (b) (c)

Figure 5: Checkerboard crossing point detection in the infrared im-
age of the depth sensor. (a) Kinect V1 uses structured light, crossing
point detection fails. (b) Successful crossing point detection with a
5 x 5 median filter applied. (c) Stable crossing point detection for
Kinect V2.
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Figure 6: Absolute 3D errors and standard deviations in mm with
increasing distance for a densely sampled range of about 0.9 - 2.1
meters in front of the Kinect V1, clustered into 4 subranges.

in the same way as before, i.e. the odd checkerboard locations were
used as reference samples for construction of the calibration volume
while the samples at the even checkerboard locations were used for
evaluation (Figure 4 (right)). The resulting accuracy for the Kinect
V1 is depicted in Figure 6. For the Kinect V1, the initial calibra-
tion was performed using the method from [3] and the rigid trans-
form for the calibration cube was captured at a distance of 1.1m in
front of the sensor, which corresponds to the range [0.9 m,1.2 m)
in Figure 6. One can see that the single rigid transform produces
only good results in the proximity of the calibration samples while
the error increases with distance. In contrast, our method is able
to achieve a much higher accuracy throughout the whole sampling
range. However, the accuracy still decreases with distance. For the
Kinect V2, our method is able to achieve a high accuracy of around
1.5 mm at a distance of 0.9 m and 2.5 mm at a distance of 2.4 m.

5.3 Multiple Sensors
In a multi-RGBD-sensor setup, we individually calibrate each sen-
sor and thus our calibration method does not incorporate informa-
tion from other sensors. Methods such as [16, 12, 8] incorporate
inter-camera information to minimize distances between the mea-
surements of individual sensors. The amount of captured corre-
spondences that are used by these methods theoretically improve
the calibration result. However, these methods do not register the
sensors into an application’s coordinate system but rather into a
warped space, which can be a drawback because the preservation
of angles and distances is not guaranteed. In contrast, our proposed
method is designed to directly map depth values from sensor space
to 3D positions in an Euclidean space with very high accuracy. The
accuracy scales with the amount of reference samples which are
captured during the calibration. However, our calibration process
relies heavily on a precise mounting of the attached tracking tar-
get since it links the checkerboard crossing points to the coordinate

system of the tracked checkerboard. As a consequence, rotation and
translation errors result in a misalignment between the registration
and the ground truth. Thus, the accurate registration of the checker-
board’s local coordinate system is a very important precondition for
the overall accuracy in a multi-sensor setup. More accurate man-
ufacturing and measuring facilities could potentially improve our
results.

We evaluated the registration of multiple sensors by measuring
pairwise 3D distances of the reconstructed checkerboard crossing
points from two sensors. The checkerboard was positioned at a
distance of approx. 1.8 m from the sensors. The sensors were posi-
tioned about 45 degrees left and right of the checkerboard. The av-
erage pairwise crossing point distance was 5.8 mm with a standard
deviation of 1.2 mm (cf. Figure 7). This overall error is affected
by the sensor resolution and noise, as well as the mechanical align-
ment of markers for both involved sensor systems. We performed
our measurements running both sensors simultaneously and also
sequentially. However, inter-sensor interference did not have any
significant influence on the accuracy in our setup. The pairwise av-
erage 3D error of about 5.8 mm is within the limits of the accuracy
of our method, as the spatial extent of a depth pixel covers 6.2 mm
on the surface of the checkerboard at that distance.

The motivation for our research is the development of a 3D cap-
turing system for 3D telepresence. We calibrated a setup of three
Kinect V2 with our proposed method taking approximately 2000
reference samples for each sensor. The capturing space was about
1.5 m x 1.8 m x 1.5 m and the sensors were positioned at an angle of
about 90 degrees, allowing for capturing from three sides. However,
our calibration method also allows other sensor configurations. In
particular, the amount of overlap can be chosen to fit the individual
application. Figure 1 shows screen shots and close-ups of real-time
reconstructions based on the reconstruction pipeline from [3]. As
one can see, our calibration results in a very good fusion of the two
overlapping sensors.

In addition, we tracked our calibration target with our calibrated
multi-Kinect V2 setup. We therefore used the depth values at the
checkerboard crossing points to look up 3D positions in the respec-
tive calibration volumes in order to calculate the 3D pose of the
checkerboard in real-time. Figure 1 illustrates the quality of regis-
tration in terms of the coincidence between two coordinate systems,
one using the reference tracking from [1] and the other using our
method. Please also refer to the video figure.

5.4 Application Runtime

We measured the influence of our method for real-time scenarios on
a PC workstation equipped with an Intel® Core™ i7 X980 six-core
processor running at 3.33 GHz and a GeForce™ GTX 680 graph-
ics card with 2 GByte VRAM. The calibration volume serves as a
3D lookup table during runtime and is stored in the memory of the
graphics card. Our application is implemented in OpenGL/GLSL.
As the maximal number of channels for a 3D texture is four, the
volume is split into two volumes, one for the positions p ∈ W
(three channels, GL RGB) and one for texture coordinates c ∈ C
(two channels, GL RG), both of type GL FLOAT. This introduces
a considerable amount of additional memory. E.g. for a calibration
volume of size 128×128×256 the memory overhead is 82 MByte
for one RGBD-sensor, resulting in 410 MByte for a 3D capturing
system which consists of five sensors. However, this overhead is
not critical for current graphics cards.

The lookups require two tri-linear interpolations per depth value
(one for the position and one for the texture coordinate) and are
hardware accelerated on the GPU via built-in shader functions.
While it is not possible to measure the performance impact of the
lookups directly, we measured the rendering times of a typical real-
time reconstruction from three RGBD-sensors with and without
lookups. It turns out that the additional costs for tri-linear inter-
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Figure 7: Reconstruction of our checkerboard without (a) and with
(b) our volumetric calibration for two overlapping Kinect V2 sensors.
(b) We measured a pairwise checkerboard crossing point distance of
5.8 mm on average for all 35 checkerboard crossing points. Seven
pairwise distances in mm are illustrated.

polation are below 0.5 milliseconds.
Our approach can reduce the overall runtime latency of a 3D

capturing system compared to a model-based calibration method,
because no image rectification processing must be performed. We
measured image rectification costs of 4 milliseconds for an RGB
color image of size 1280× 1080 and 2 milliseconds for a depth
image of size 512×424 on average, using cvRemap from OpenCV
[6] as it is needed by the methods from [16, 3]. At first glance, the
time savings of our method might seem small and the rectification
could also be accomplished on the GPU. However, if a 3D capturing
system has to process the image streams of multiple sensors, the
costs for image rectification become increasingly noticeable.

6 CONCLUSION AND FUTURE WORK

The calibration and registration of multiple RGBD-sensors is a
challenging task. In order to obtain a perfect fusion of all involved
cameras in three dimensional space, most approaches have to iden-
tify a large set of intrinsic and extrinsic parameters to fit an un-
derlying mathematical model with high accuracy. We realized an
integrated method for the accurate calibration and registration of
multiple RGBD-sensors into a joint coordinate system which does
not rely on a precise identification of these parameters. Our ap-
proach starts with an initial sensor calibration that is then locally
fitted based on a set of references which are sampled by placing
a tracked checkerboard at different locations inside the capturing
space. Each reference is defined by the world space positions of the
crossing points of the checker board pattern and their corresponding
positions in the color and depth camera spaces. The reference set is
then used to construct a single calibration and registration volume
per RGBD-sensor which implicitly integrates all the intrinsic and
extrinsic parameters. As a result, our calibration volume maps raw
depth sensor values in a single step into a joint coordinate system
and to their associated color values.

Our evaluation shows that we are able to register the sensors
with an average accuracy of about 4-6 mm for the Kinect V1 and
2-3 mm for the Kinect V2 into our joint coordinate system. We
also achieved a texture coordinate deviation smaller than 0.8 pixel
for the Kinect V1’s color camera and smaller than 0.5 pixel in the
Kinect V2’s color camera. We identified natural neighbor interpo-
lation to be a robust and high quality interpolation scheme when the
acquired reference samples are densely distributed inside the cap-
turing space. In addition, real-time applications can benefit from
our approach because image rectification processes can be avoided
and the end-to-end latency of 3D capturing systems can be reduced.

The main constraints of our method are that the accuracy can
only be achieved inside the convex hull of the reference samples
and that it relies on dense sampling. Furthermore, the accuracy
of the involved tracking system and the precise calibration of the
tracked checkerboard are also of significant influence. Our calibra-
tion and registration process could be accelerated by sweeping the

checkerboard through the capturing space. However, this would re-
quire that the tracking system and the RGBD-sensors are in perfect
sync, which might be possible with next generation hardware.
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