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ABSTRACT

The accurate calibration and registration of a set of color and depth
(RGBD) sensors into a shared coordinate system is an essential re-
quirement for 3D surround capturing systems. We present a method
to calibrate multiple unsynchronized RGBD-sensors with high ac-
curacy in a matter of minutes by sweeping a tracked checkerboard
through the desired capturing space in front of each sensor. Through
the sweeping process, a large number of robust correspondences
between the depth and the color image as well as the 3D world
positions can be automatically established. In order to obtain tem-
porally synchronized correspondences between an RGBD-sensor’s
data streams and the tracked target’s positions we apply an off-line
optimization process based on error minimization and a coplanarity
constraint. The correspondences are entered into a 3D look-up table
which is used during runtime to transform depth and color informa-
tion into the application’s world coordinate system. Our proposed
method requires a manual effort of less than one minute per RGBD-
sensor and achieves a high calibration accuracy with an average 3D
error below 3.5 mm and an average texture reprojection error smaller
than 1 pixel.

Index Terms: I.4 [Image Processing and computer vision]: Digiti-
zation and Image Capture—Camera calibration

1 INTRODUCTION

Camera-based 3D capturing systems form the technical basis for
many applications in the context of virtual reality and computer
graphics. A very active application domain is 3D telepresence [5,
10, 16], where users are typically captured and reconstructed in
real-time in order to be represented as virtual humans. This allows
groups of users from different locations to meet and collaborate
in a shared virtual environment [5]. Another application domain
of 3D capturing systems is skeleton tracking or 3D tracking in
general. In such scenarios, the captured measurements either serve
as input for 3D interaction tasks, e.g. by tracking the user’s hand [27]
and body [19, 21], or for the generation and animation of virtual
characters [23]. In any application domain, the accuracy of the
measurements from the underlying 3D capturing system is essential
for the achieved quality and strongly depends on the calibration and
registration of the involved camera sensors.

Our application domain is immersive 3D telepresence, where a
3D capturing system is used as input for the real-time 3D reconstruc-
tion of users. The 3D capturing system is formed by a cluster of
color and depth (RGBD) sensors. In addition, the users and their
input devices are tracked by a high-precision tracking system which
typically defines or is rigidly linked to the application’s world co-
ordinate system. A specific challenge for 3D capturing systems is
that the RGBD-sensors have to be calibrated and registered into
the coordinate system which is shared with the application, i.e. all
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sensor contributions have to match as closely as possible in a shared
coordinate system for an artifact-free surround reconstruction of
the captured content. The reconstruction in the (virtual) coordinate
system of the application enables direct interaction with the virtual
content, e.g. natural bare-handed pointing at features of virtual ob-
jects can be directly and consistently observed by remote users [5].

In 2015, we presented an integrated method for the precise cali-
bration and registration of RGBD-sensors into a shared coordinate
system which fulfills the specific calibration challenges for 3D telep-
resence [4]. The calibration was performed by placing a tracked
checkerboard at different locations inside the capturing volume to
capture a set of correspondences (reference samples) which were
then used to obtain the calibration. While the achieved accuracy is
very high, the main limitation of our original method is the relatively
high manual effort, i.e. it takes about 30 minutes to obtain enough
reference samples per RGBD-sensors. This effort becomes infeasi-
ble if the calibration has to be repeated often, e.g. because the sensor
setup has to be changed or is slightly misaligned due to accidental
movements.

To overcome this limitation, our new method significantly speeds
up the manual operation of capturing reference samples. Instead of
placing the checkerboard target at a set of static sampling locations,
the user sweeps the target at reasonable speed through the desired
capturing volume for only about one minute per sensor. While
the basic concept of the calibration process remains similar to our
original approach, our new method has the specific challenge that
we need to obtain synchronized correspondences between the color
and depth sensor’s image streams and the tracked checkerboard’s
positions. This is not a trivial task since the tracking system and
the RGBD-sensor cannot be synchronized by hardware. If the un-
known latency differences between the sensor streams are ignored,
the resulting calibration would be significantly distorted. However,
we observed that the latency differences are quite constant and de-
veloped an efficient off-line optimization process which computes
these latency differences and synchronizes all involved data streams.
The optimization process maximizes the coplanarity of the recon-
structed checkerboards’ crossing points or minimizes their 3D and
2D reprojection error.

The main contributions of our work are

• a highly accurate, sweeping-based calibration method which
requires a manual calibration effort of only a few minutes for
typical capturing setups consisting of 4 or 5 RGBD-sensors,

• an optimization process to establish synchronized correspon-
dences from non-synchronized data streams and

• a filter chain for robust identification of outliers during the
crossing point detection in RGBD-sensor image streams.

We compared our proposed sweeping-based method to our initial
method [4] that uses static sampling. Our observations reveal that
sweep sampling is only slightly less accurate than static sampling.
We also improved the alignment of the checkerboard’s local coordi-
nate system with the tracking target, which was a major source of
error in our original method.



Table 1: Comparison of the characteristics of state-of-the-art multi-sensor calibration methods. Intrinsic relates to the explicit identification of
the intrinsic parameters of the involved color and depth sensors. Depth calibration relates to whether an explicit correction of the sensors’
depth measurements is performed. Extrinsic relates to the calibration of the rigid transformation between the depth and color coordinate
systems. Registration relates to whether multiple RGBD-sensors are externally registered to a (shared) reference coordinate system or in a
camera-to-camera fashion (inter-camera). Geometric preservation relates to whether the calibration preserves shapes, lengths, and angles of the
captured scene geometry.

Method Intrinsic Depth
calibration

Extrinsic Registration Geometric
preservation

Manual effort

Maimone et al. [16] optical no optical reference no low
Maimone et al. [17] optical no optical ref. + inter-camera no low
Kainz et al. [13] optical no optical ref. + inter-camera no medium
Beck et al. [5] optical yes optical reference yes high
Deng et al. [8] optical no optical + geom. inter-camera no medium
Avetisyan et al. [3] optical yes optical reference yes high
Avetisyan et al. [2] optical yes optical + geom. reference yes low
Beck et al. [4] integrated volumetric color and depth calibration to a shared reference yes high
Our integrated volumetric color and depth calibration to a shared reference yes low

Figure 1: Fast capturing of reference samples: The users sweeps the
tracked checkerboard at moderate speed of approx. 20 to 40 cm/s
through the capturing space in front of the sensor. The sweeping path
should overlap, i.e. the user has to sweep over the same regions
from different directions, in order to enable our proposed off-line
optimization process. Simultaneously, the sensor’s color, infrared and
depth image streams as well as the tracked pose are recorded to a
file along with time-stamps.

2 RELATED WORK

3D capturing systems are often based on RGBD-sensors like the
Microsoft Kinect (version 1 or 2), e.g. [5, 8, 13, 16, 19, 21, 31], some
systems [2, 14] combine Kinect sensors with more sophisticated
color cameras. The objective of calibration is to determine the
intrinsic parameters of an underlying projection model for each
sensor as well as extrinsic parameters for a mapping between the
sensors and to a common coordinate system. Raposo et al. [20] give
a detailed definition of all involved parameters and the camera’s
projection model. Although most parameters are pre-calibrated by
the manufacturer, more dedicated techniques are known to improve
calibration accuracy [12]. Moreover, the depth sensor’s distance
measurement has to be calibrated too since it is affected by non-
linear distortion [5, 12, 15].

State-of-the-art camera calibration methods employ a checker-
board in order to capture a set of feature points to identify the
camera’s intrinsic parameters based on Zhang’s [29] model. Sev-
eral calibration techniques have been proposed to address the spe-
cific challenges of RGBD-sensors [5, 12, 20, 25, 26, 31]. Raposo

et al. [20] improved the accuracy of the joint calibration method
of Herrera et al. [12] and additionally speed up of the calibration
process. Staranowicz et al. [26] use a spherical object instead of a
checkerboard which simplifies the calibration for non-expert users.

The calibration of multi-sensor 3D capturing systems is far more
challenging than calibrating a single sensor since a large set of
matching intrinsic and extrinsic parameters have to be identified to
achieve high accuracy. Schmidt et al. [22] present a method for the
calibration of a multi-sensor tracking system based on inter-camera
error minimization, however, depth sensors are not addressed. More-
over, some application domains have specific requirements, e.g. the
calibration and registration of all sensor contributions into the shared
coordinate system of the application [5]. Table 1 compares the char-
acteristics of the calibration methods that are most closely related to
our work. All of them focus on the registration of multiple RGBD-
sensors and aim for a perfect fusion throughout a large capturing
volume.

In 2011, Maimone et al. [16] introduced a telepresence system
based on multiple Kinects. They reported a 3D error ranging from
approx. 1.8 cm at a distance 0.7 m to approx. 3 cm at a distance of
1.8 m from the cameras, which was mainly caused by the inaccuracy
of the Kinect’s depth measurement. In order to improve the 3D
matching of multiple sensors, Maimone et al. [17] proposed an
inter-camera-based calibration method. They captured a set of 3D
correspondences inside the capturing space which were then used
to fit an affine transformation for each sensor that minimized the
distances between the correspondences resulting in a 3D error of
approx. 1 cm. In 2012, Kainz et al. [13] presented a similar approach
using a calibration sphere to obtain a set of 3D correspondences.
The correspondences where then used to fit a three-dimensional
polynomial function that maps depth values to world space positions
at runtime for each sensor. However, they did not report quantitative
results on the resulting accuracy.

In 2013, Beck et al. [5] proposed a method for the correction of
the depth measurement. An optical tracking system was used as
reference to obtain a look-up volume that maps from a sensor’s raw
depth values to metric values. As a result, the accuracy of the depth
measurement was significantly improved compared to the standard
approach. However, only a single rigid body transformation was
used to register the sensors into the application’s coordinate system.
As a result, high fusion accuracy could only be achieved in the areas
where the calibration target was positioned, whereas in other areas
the contributions of multiple sensors matched poorly. To address this,
Deng et al. [8] suggested a field of rigid transformations which is



interpolated during runtime. In 2014, Avetisyan et al. [3] presented
an approach for the calibration of depth sensors conceptually similar
to the one presented by [5], but slightly more accurate (0.8-1.2 cm
vs. 1-2 cm).

Most calibration methods either apply explicit depth calibration
or rely on inter-camera error-minimization. Consequently, these
methods depend on the accuracy of a large set of interdependent and
error-prone parameters. In general, the limitations of inter-camera
based approaches as presented by [8, 13, 17, 22] are that the sensors
have to overlap (at least two) and that the registration might result
in geometrical distortions since the sensors are not registered to a
metric reference space. To overcome this, Beck et al. [4] presented
an integrated calibration method which is independent of any specific
lens or camera model, implicitly compensates depth distortion, and,
registers the sensors into a shared coordinate system which is defined
by an already calibrated high-precision tracking system. A major
benefit of their method is its high local fusion quality and that
it avoids runtime image rectification. Zhou et al. [31] propose a
volumetric calibration to compensate the depth sensor’s non-linear
distortion similar to [4]. However, their depth sensor calibration is
performed in depth sensor space and does not register the sensor into
a shared coordinate system. Moreover, they do not address color
sensing.

More recently, Avetisyan et al. [2] presented a refined approach
based on the ideas of [4] and [3]. Similar to [4], they place a tracked
checkerboard target at different locations in front of each involved
sensor. Based on a sequence of captured correspondences they
calculate the sensors’ intrinsic parameters and 3D lookup tables to
correct the distortions of the depth sensors. They reported an average
reprojection error below 0.5 pixels for each sensor. However, the
extrinsic calibration was defined by a single rigid transformation per
sensor, which can cause varying fusion quality throughout a larger
capturing volume [8].

Our research is inspired by our earlier work where we addressed
the specific challenges of multi-sensor 3D capturing systems in an
integrated manner [4]. Our initial method compensates both, lens
and depth distortions, and, it provides almost perfect local fusion
quality for multiple sensors. However, a major drawback is the
time-consuming reference sampling process which results in a very
high manual effort. Our motivation is to significantly speed up the
calibration process by replacing the manual reference sampling step
with sweeping (Figure 1) while still providing high accuracy. Our
proposed method has the specific challenge that we need to obtain ro-
bust and synchronized correspondences between the color and depth
sensor’s image streams and the position of the tracked checkerboard.
This challenge was already inherent in the depth-correction methods
of earlier work [2,3,5]. However, synchronization was not addressed
and distortions due to differences in latency of the involved sensors
were ignored. The alignment of unsynchronized sensor streams was
investigated in different domains and several solutions have been
presented [11,18,24,30]. Zhou et al. [30] presented a method for the
estimation of the temporal offsets between unsynchronized video
streams in the context of stereo vision. Sinha et al. [24] presented
a visual-hull-based 3D capturing system and a method for the tem-
poral alignment of unsynchronized video cameras. Most existing
approaches are based on an optimization process (error minimization
or maximum likelihood estimation) using inter-sensor correspon-
dences. However, each approach differs from our specific challenge,
either in preconditions (e.g. the knowledge of sensor intrinsics [11])
or in the measurement systems (video sensors [11, 18, 24, 30] vs.
RGBD-sensors in combination with an optical tracking system).

Our new approach was developed to allow the calibration of
RGBD-sensors in a very short time using sweep sampling, which
required the synchronization between the tracking system, and the
color and depth sensor streams.

Figure 2: Overview of our proposed method. First, a rough initial
calibration ϒ is computed using a set of captured frames of the tracked
checkerboard. Second, the user sweeps the tracked checkerboard
inside the desired capturing space in front of the sensor. The recorded
sweep is then used to establish a set of synchronized and robust
reference samples (sweep sampling). Third, the final calibration Ω is
computed from the reference samples by an integrated correction of
ϒ of using scattered data interpolation.

Figure 3: Relationship between the initial calibration ϒ and the volu-
metric calibration Ω.

3 CALIBRATION METHOD OVERVIEW

The central idea of our calibration method is similar to our original
method [4]: for each RGBD-sensor, a rough initial calibration ϒ is
computed and then locally corrected by a set of reference samples
{R} to obtain our final calibration Ω. Figure 3 and 5 illustrate the
related coordinate systems. The initial calibration ϒ is a function that
maps pixels d ∈ D from the depth sensor space D to 3D positions
p ∈W in our shared coordinate system, and to texture coordinates
c ∈ C of the corresponding color space C. W is defined by the
tracking system. Our final calibration Ω is defined in (normalized)
volume space V and, similarly, maps to W and C.

As an overview, our proposed method is performed by the steps
depicted in Figure 2. First, a rough initial calibration is computed
using the state-of-the-art method from Zhang [29], however, no
image rectification is applied. Second, a large set of reference
samples {R} is captured inside the capturing volume at the crossing
points of a tracked checkerboard in front of each sensor. Finally, the
calibration is performed by correcting the initial calibration locally
and applying the correction offsets that are calculated at the reference
samples.

The concept of a reference sample is illustrated in Figure 5 along
with the involved coordinate systems. Each reference sample con-
tributes to the integrated correction of the initial calibration with two
correction offsets: δp, which corrects the calibration from the depth
sensor space to world space, and δc which corrects the calibration
from depth sensor space to color space. Figure 6 illustrates the
calibration in terms of a local correction of the initial calibration
which is performed in normalized volume space. As a result, the
final calibration Ω maps values from depth sensor space directly
to coordinates of the color sensor and to positions in the shared
coordinate system of the application.



(a) (b) (c) (d)

Figure 4: Illustration of the latency difference ∆Ldepth→pose between the depth sensor and the tracking system. (a) For a static checkerboard the
measurement of the depth sensor and the tracking system coincides at d and p. ((b) and (c)) If the checkerboard is in motion (during sweeping),
the measurement of the sensor is delayed by a latency difference ∆Ldepth→pose. As a consequence, the measured locations di and dk at points in
time ti and tk do not correspond to the measurements pi and pk of the tracking system. (d) Hence, the correct measurements di∗ and dk∗, which
correspond to pi and pk, can only be identified if the latency difference ∆Ldepth→pose is known. Similarly, the measurement between the depth and
the color sensor is not consistent since they have a slight latency difference ∆Ldepth→color too.

Figure 5: Schematic illustration of the involved coordinate systems
during reference sampling and the correction offsets δp and δc which
are used during calibration. A reference sample ri is located at a
crossing point of the checkerboard. The coordinates of the crossing
point can be simultaneously detected in the depth space (di ∈ D),
the color space (ci ∈C) and in world space (pi ∈W ). At di, the initial
calibration ϒ maps to (cϒ ∈C) and (pϒ ∈W ). Hence, ϒ can be locally
corrected using δp and δc. Please note that di is defined by the coordi-
nate of the crossing point in the infrared image and the corresponding
z−value in the depth image.

Figure 6: (a) The process of sweep sampling generates a large set
of reference samples {R} inside the frustum of the sensor. (b) Our
integrated calibration corrects the initial calibration ϒ at each voxel
vi ∈V by applying the interpolated offsets δp and δc that are retrieved
from its neighboring reference samples. (c) Our final calibration Ω

maps values d ∈ D to positions pΩ ∈W and cΩ ∈ C using (trilinear)
interpolation in normalized volume space V .

4 SWEEPING-BASED REFERENCE SAMPLING

In order to speed up the manual process of taking reference samples,
we developed a method that we refer to as sweep reference sampling.
As an overview, sweep reference sampling is performed by the
following three steps:

1. Sweeping the tracked checkerboard target through the desired
capturing volume in front of the sensor (Figure 1).

2. Filtering and robust extraction of reference samples from the
RGBD-sensor stream and the pose stream.

3. Optimization of the calibration based on 3D/2D error mini-
mization and a coplanarity constraint.

During sweeping, we record the sensor’s color, infrared and depth
image stream and assign a time-stamp to each frame. Simultaneously,
we record the tracked checkerboard’s pose together with time stamps
to a separate file. In order to establish a common timing of the data
streams we set the clock of the tracking system to the clock of
the workstation where the sensor is attached when the recording
starts. Obviously, this does not synchronize the measurements of
the RGBD-sensor and the tracking system since the two systems
have different latencies. Figure 4 illustrates the situation: If the
checkerboard is moved away from the sensor (to the right), we can
suppose that at the time when a depth sensor’s frame arrives in the
application, its currently tracked position is already farther to the
right and vice versa. In principle, it would be possible to measure
the latency of a system following the method from e.g. [9]. However,
we are not interested in the absolute latencies. Instead, we are only
interested in the latency difference ∆Ldepth→pose between the depth
sensor and the tracking system. Similarly, the RGBD-sensor itself
typically has a slight latency difference ∆Ldepth→color between its
depth and color measurement.

In order to resolve this issue, the latency differences ∆Ldepth→pose
and ∆Ldepth→color between the captured data streams have to be iden-
tified. We present an implicit solution to this problem in Section 4.2.
Please note that during sweeping, the image streams of the sensor
as well as the pose stream are recorded to files without any on-line
processing, in particular, without any image rectification or filtering.

Notations In the following, we give a few notations that we use
throughout the next sections:

• ci(t) is the i-th entry in the list of 2D crossing points that are
detected in the color image at time t.

• iri(t) is the i-th entry in the list of 2D crossing points that are
detected in the infrared image at time t.

• di(t) is the i-th entry in the list of 3D crossing points (ui,vi,zi)
that are detected in the corresponding depth and infrared image
at time t, where (ui,vi) = iri(t) and zi = depth(ui,vi).



Figure 7: Schematic overview of the robust extraction of reference
samples (sweep sampling). First, crossing point (sub-)patterns are
detected in the color and infrared images and matched. If (sub-)
patterns cannot be matched, both frames are marked as invalid (red).
Second, frames with significantly too much temporal jitter are also
marked as invalid (red). Next, crossing point outliers are detected,
and flagged (blue). Of course, the illustrated erroneous frames or
outliers can occur anywhere in the streams. After filtering, the re-
maining frame sequences (green) are collected, too short sequences
(purple) are discarded. Next, frame quality is computed based on the
current motion speed. Finally, the reference samples are extracted
from the filtered frames at the valid (non-flagged) correspondences
incorporating the latency differences ∆Ldepth→pose and ∆Ldepth→color.

• pi(t) is the i-th entry in the list of 3D crossing points (xi,yi,zi)
in world space W measured by the tracking system.

A reference sample ri(t) at time t is then defined as:

ri(t) = (di(t),ci(t),pi(t)) (1)

The set R(t) of reference samples per checkerboard location then is:

R(t) = {ri(t)}1≤i≤k (2)

The set d(t) of 3D crossing points per checkerboard location in the
combined depth and infrared image at time t then is:

d(t) = {di(t)}1≤i≤k (3)

The set c(t) of 2D crossing points per checkerboard location in the
color image at time t then is:

c(t) = {ci(t)}1≤i≤k (4)

The set p(t) of 3D crossing points per checkerboard location in
world space at time t then is:

p(t) = {pi(t)}1≤i≤k (5)

According to above notations, we refer to the sets contained in the
recorded sweep as {R}, {d}, {c} and {p}.

4.1 Robust Extraction of Reference Samples
In order to obtain a set of reference samples {R}, the correspon-
dences {d}, {c} and {p}, have to be extracted robustly from the
recorded sweeping. Therefore, all possible corrupt or outlying corre-
spondences have to be detected first. While p(t) is robust, we apply
several filters on the sets d(t) and c(t). The most problematic step
during sweep sampling is the checkerboard crossing point detection
since it is very sensitive to noise and motion blur which can lead
to outliers. After the filter chain is applied, all erroneous crossing
points, ci(t) or di(t), from d(t) and c(t) are flagged as invalid. Fortu-
nately, the recorded sequence typically contains enough frames with
spatial overlap such that several thousand correspondences can be
established. As an overview, the following filtering steps are applied
on a frame-by-frame basis (Figure 7):

Figure 8: The establishment of the reference samples R(t) at a cer-
tain time t has to incorporate the latency differences ∆Ldepth→pose
and ∆Ldepth→color. As a consequence, the corresponding intermedi-
ate coordinates c(t +∆Ldepth→color) and p(t +∆Ldepth→pose) have to be
interpolated from adjacent frames.

(a) (b) (c)

Figure 9: Cascading (sub-)pattern detection and matching between
the infrared and color image. (a) The full pattern can be detected in
both images. (b) and (c) When the checkerboard pattern is swept
toward the border, only (sub-)patterns can be detected due to the
different fields of view of the sensors. Detected crossing points which
do not match between the (sub-)patterns are flagged as invalid (red).

1. Cascading (sub-)pattern detection.
2. Invalidation of frames with to much temporal jitter.
3. Statistical outlier detection.
4. Calculation of frame quality based on motion speed.

First, we try to detect the captured crossing point patterns in the
corresponding color and infrared images and try to match them.
This is performed in a cascading fashion, (Figure 9): if the full
pattern (e.g. a pattern of 5×7 crossing points) cannot be detected,
we fall back to the detection of smaller (sub-)patterns, e.g. 4×7 or
3× 7. Crossing points which do not match within the two (sub-)
patterns are flagged as invalid. If no matching is possible, both
frames are invalidated. The situation of non-matching crossing point
patterns can occur if the smallest checkerboard sub-pattern cannot
be detected any more, or, when the corner detection completely fails
due to noise or motion blur. In this step, we also ensure that the
ordering of crossing point detection is consistent.

Second, we invalidate complete frames which exhibit too much
temporal jitter since our method relies on a temporally smooth image
sequence with constant latency on average. Temporal jitter can be
caused by data loss during the transmission of frames from the
sensor to the driver. We discard frames having a temporal deviation
larger than twice the standard deviation.

Next, two types of crossing point outliers are detected, and, if
apparent, the outliers are flagged as invalid. The first type of outliers
are corrupt depth values due to holes in the depth image. These out-
liers are sometimes caused by very bright reflections of the emitted
infrared light (into the depth sensor). We detect these corrupt depth
values by fitting a plane through the set of d(t) and flag crossing



Figure 10: Robust crossing point outlier detection based on im-
age space triangle area ratios. First, the crossing points are
clustered into quadrilaterals which are formed by two types of tri-
angle pairs (blue and purple). Next, the ratios of the triangle
area pairs and the two means (meanh and meanv) are computed
as follows: meanh (blue triangle pairs) and meanv (purple triangle
pairs), with meanh = mean(ratioAEB/FBE , ...,ratioSWT/XTW ) and meanv =
mean(ratioEFA/BAF , ...,ratioWXS/T SX ). In a frame without noise, both,
meanh and meanv are close to 1.0 and the corresponding standard
deviations are close to 0.0. In this example, 15 ratios (blue quadrilat-
erals) are evaluated and compared to meanh, and further, 15 ratios
(purple quadrilaterals) are evaluated and compared to meanv. Obvi-
ously, crossing points L and R cause several triangle ratio outliers
(indicated by asterisks) which are detected. Our algorithm does not
identify the crossing points L and R directly. Instead, it greedily invali-
dates each crossing point (marked in red) which is part of an outlying
triangle pair, hence, false positives are accepted.

points if individual distances deviate more than twice the standard
deviation. The second type of outliers are crossing points with
wrongly detected crossing point coordinates in the infrared or color
images. We greedily identify these outliers based on a statistical
outlier detection filter which is illustrated in Figure 10.

Finally, we compute quality values for each set d(t), c(t) and
p(t) based on the actual motion speed. The slower the actual speed
compared to the average motion speed of the whole sequence, the
higher the quality and vice versa.

After the filter chain is applied, the set of reference samples
{R} is established from the remaining valid frames and the non-
flagged crossing points as illustrated in Figure 8. As a basis, the
frames of the depth sensor stream are used. The correspondences
are then established at frames d(t) with the interpolated set of c(t +
∆Ldepth→color) from the color sensor’s stream and the interpolated
set p(t +∆Ldepth→pose) from the pose stream taking into account
the latency differences ∆Ldepth→pose and ∆Ldepth→color. In a last
step, spatially overlapping reference samples are merged to their
quality-weighted average.

4.2 Optimization of the Latency Differences

The final calibration Ω can be considered as a function of the la-
tency differences ∆Ldepth→pose and ∆Ldepth→color. In order to ob-
tain synchronized correspondences we have to identify the opti-
mal latency differences. The central idea of our optimization pro-
cess is as follows: If we establish correspondences based on a
set of reference samples, using non-optimized latency differences
∆Ldepth→pose = 0 and ∆Ldepth→color = 0, the resulting calibration
Ω will be distorted, i.e. the calibration from depth sensor space to
positions in world space Ωp(d(t),∆Ldepth→pose) as well as to the
positions in color space Ωc(d(t),∆Ldepth→color) will be distorted.
The distortion increases with the amount of overlap of the sweep-
ing path (Figure 1 and 4). Hence, at each checkerboard location
of the filtered input d(t) we will observe deviations depending on
∆Ldepth→pose and ∆Ldepth→color. We minimize the deviations and
implicitly optimize the latency differences in our optimization using
the following constraints:

Figure 11: Schematic illustration of the optimization processes for
∆Ldepth→pose and ∆Ldepth→color. (1.) The optimization starts with initial
latency differences (both are set to 0.0) and the reference samples
are generated in order to obtain the calibration Ω. Please note that the
establishment of the correspondences depend on both, ∆Ldepth→pose
and ∆Ldepth→color (Figure 8). ∆Ldepth→pose can be optimized using two
different approaches: By maximizing the average coplanarity (2a.) or
by minimizing the average 3D error (2b.) for every input d(t). The
optimization is finished if a coplanarity maximum (3D error minimum)
is reached, otherwise ∆Ldepth→pose is updated and the process restarts
at (1.). (3.) In a similar way, ∆Ldepth→color is optimized by minimizing
the average 2D error for every input d(t).

• Coplanarity constraint: The set of calibrated 3D points
Ωp(d(t),∆Ldepth→pose) should be coplanar since d(t) is copla-
nar.

• 3D reprojection constraint: The set of calibrated 3D points
Ωp(d(t),Ldepth→pose) should coincide with the corresponding
3D reference points p(t +∆Ldepth→pose).

• 2D reprojection constraint: The set of calibrated 2D points
Ωc(d(t),Ldepth→color) should coincide with the corresponding
2D reference points c(t +∆Ldepth→color).

Given the above constraints, we are able to optimize the latency
difference ∆Ldepth→pose in two ways: first, by searching for the max-
imum average coplanarity and second, by minimizing the average
3D reprojection error. The latency difference ∆Ldepth→color can be
optimized by minimizing the average 2D reprojection error respec-
tively. We measure the amount of coplanarity (CP) for a frame d(t)
using principal component analysis:

CP(t,∆Ldepth→pose) = planeFit({Ωp(d(t),∆Ldepth→pose)}) (6)

The function planeFit internally computes the best fitting plane
of the set of 3D positions and returns a normalized fitting quality
between 0.0 and 1.0, whereas 1.0 indicates a perfect fit and hence
perfect coplanarity. The 3D reprojection error is measured as the
average of the corresponding Euclidean distances between the 3D
points pi(t +∆Ldepth→pose) and Ωp(di(t),∆Ldepth→pose). The 2D
reprojection error is measured as the average of the corresponding
Euclidean distances between the 2D points ci(t +∆Ldepth→color)



Figure 12: Schematic illustration of the capturing spaces which were
evaluated. The green area is the space where a user is typically
captured by our system. The purple area is the space where sweeping
is possible. We provide results of the achieved calibration accuracy
for the green area in Table 2 and for the purple space in Figure 13.

and Ωc(di(t),∆Ldepth→color). Figure 11 gives a schematic overview
of the three optimization processes. The optimization processes are
independent of each other and can be performed in a brute force
fashion or iteratively using the method of gradient descent. We
implemented both approaches and found that curve fitting is a good
approximation.

5 RESULTS AND DISCUSSION

In our evaluation we used Kinects of version 2 with an open source
driver [28]. We cropped the resolution of the color image to 1280×
1080 in order to fit the field of view of the depth sensor, performed
our volumetric calibration for a volume size of 128× 128× 128
voxels and clipped the sensor’s depth to a range of 0.5 m to 3.0 m.
Our proposed method was implemented in C/C++, using OpenCV
[6] for the crossing point detection. We used CGAL [7] for natural
neighbor interpolation and for the function planeFit from equation
(6). We used a tracking system from A.R.T. [1] for tracking the
pose of the checkerboard with a very high accuracy in the range
of 1-2 mm throughout a large space of about 4 m x 3 m x 2.5 m.
The pattern on our checkerboard has 7× 5 crossing points which
we printed onto a warp-resistant board mounted on a custom stand.
The initial calibration was performed using OpenCV. Please note
that image rectification is not performed since the method implicitly
compensates image distortion in the volumetric calibration. Please
also note that we do not perform any on-line processing in terms of
filtering during sweeping. Further, we save the acquired streams to a
RAM disk in order to avoid writing stalls.

5.1 Evaluation Approach
We were interested in the accuracy of our sweeping-based cali-
bration method and compared it to the accuracy of our original
approach using static sampling [4]. We evaluated both methods
with the same set of ground truth reference samples {Reval} =
({deval},{ceval},{peval}). The 3D accuracy is defined in terms of
the average Euclidean distance between the calibrated world posi-
tions {pcalib} = Ωp({deval}) and the corresponding ground truth
positions {peval}. Hence, the reference for the 3D error is the track-
ing system. Similarly, the 2D accuracy is defined in terms of the
average Euclidean distance between the calibrated color coordinates
{ccalib} = Ωc({deval}) and the corresponding ground truth color
coordinates {ceval}, which is equivalent to the 2D reprojection error
used in the literature [12].

As an overview, the evaluation was performed as follows:

1. Computation of an initial calibration ϒ using OpenCV.
2. Static reference sampling to obtain a set {R}.
3. Split of {R} into disjunctive sets {Rstatic} and {Reval}.
4. Sweeping and Sweep-based reference sampling to obtain the

set {Rsweep}.
5. Computation of the final calibration based on the correction of

ϒ using {Rstatic}.

Table 2: Average absolute errors for a Kinect v2 sensor in 3D world
space and 2D texture space for static and sweep sampling and the
two different scattered data interpolation schemes inverse distance
weighting (IDW ) and natural neighbor interpolation (NNI). For sweep
sampling, we evaluated the accuracy without any optimization of the la-
tency differences (SweepIDW ) and with our proposed optimization meth-
ods using the coplanarity constraint (SweepIDWCP , SweepNNICP ) and the
proposed 3D/2D error minimization (SweepIDW3D/2D , SweepNNI3D/2D ).
For SweepIDWCP and SweepNNICP we set ∆Ldepth→color to 10ms. The res-
olution of the calibration volume was 128×128×128. For IDW , only
positions inside the convex hull of the input set were evaluated. 3D er-
rors are in mm, 2D errors in pixels, standard deviations in parentheses.

Method 3D error 2D error
StaticIDW 2.29 (1.52) 0.282 (0.162)
StaticNNI 2.1 (1.53) 0.278 (0.154)
SweepIDW 6.25 (3.52) 1.37 (1.11)
SweepIDWCP 3.02 (2.21) 0.951 (0.834)
SweepIDW3D/2D

3.02 (2.21) 0.836 (0.722)

SweepNNICP 3.01 (2.22) 0.953 (0.858)
SweepNNI3D/2D

3.01 (2.22) 0.842 (0.727)

6. Computation of the final calibration based on the correction of
ϒ using {Rsweep}.

We evaluated both methods using inverse distance weighting
(IDW ) and natural neighbor interpolation (NNI) for scattered data
interpolation following [4]. In addition, for our new sweep sampling
approach, we evaluated our proposed optimization processes to iden-
tify the optimal latency differences in order to obtain synchronized
reference samples for {Rsweep}.

5.2 Calibration Accuracy

In our evaluation, static sampling took approx. 25 minutes yield-
ing in the set {Rstatic} of 2100 reference samples, whereas sweep
sampling took only about one minute yielding in the set {Rsweep} of
approx. 50,000 reference samples. The set {Reval} contained 2000
reference samples.

We performed our evaluation inside the two capturing areas il-
lustrated in Figure 12. Table 2 lists the resulting accuracy of the
different methods inside the capturing space which is typically cov-
ered by a Kinect in a 3D capturing setup for telepresence. The
main benefit of sweep sampling is that a very large number of ref-
erence samples can be captured in a very short amount of time. Of
course, the quality of the sweeping-based reference samples is af-
fected by motion blur and inherent noise which cannot be filtered
out completely. The original method using static sampling results
in a very high accuracy (StaticIDW and StaticNNI), confirming the
results of [4]. Our new method based on sweep sampling results
in a slightly higher 3D error of approx. 3.0 mm (SweepNNI3D/2D )
compared to approx. 2.1 mm (StaticNNI). The 2D reprojection error
is slightly higher too, however, still lower than one pixel on average.

In addition, our evaluation shows that the influence of the method
for scattered data interpolation (SweepIDW3D/2D vs.SweepNNI3D/2D )
is very low, which is mainly due to the large number of reference
samples. The method for the optimization of ∆Ldepth→pose, however,
seems to have only a marginal influence. Further, it can be seen that
the optimization of the latency difference ∆Ldepth→color between
the depth and the color sensor stream is beneficial since the 2D
reprojection error is lower with the 2D error minimization enabled
(e.g. SweepNNI3D/2D vs. SweepNNICP ). Further, the benefit of our
optimization process is obvious: without optimization (SweepIDW ),
the calibration accuracy is drastically decreased.



(a) (b)

Figure 13: Comparison of the 3D errors (a) and 2D reprojection errors
(b) for static and sweep sampling clustered to three depth ranges.
For both methods we used NNI-based scattered data interpolation,
for sweep sampling we used the proposed 3D/2D error minimization
optimization.

We also evaluated the accuracy of sweep sampling for differ-
ent depth ranges in front of an RGBD-sensor as illustrated in Fig-
ure 12 and compared it to static sampling. The input sets {Reval},
{Rstatic} and {Rsweep} were the same as in the previous evaluation
and {Reval} was clustered into three depth ranges. Figure 13 shows
the results. The 3D accuracy as well as the 2D accuracy of sweep
sampling are lower in the range close to the sensor. This is mainly
due to the fact that motion blur gets much higher close to the sensor
during sweeping. E.g. if the users sweeps the checkerboard close to
the sensor, the motion of the checkerboard pattern in the acquired
images is relatively high and the detection of the checkerboard’s
crossing points gets less stable in this region such that many crossing
points are invalidated by our filter chain and fewer reference samples
can be obtained close to the sensor. However, the accuracy of our
sweeping-based approach increases in the ranges (1.25m,2.0m] and
(2.0m,3.0m]. Furthermore, we recommend to simply sweep slower
close to the sensor to improve the accuracy in this region.

5.3 Optimization Process
First, we evaluated the stability of the frame times, since our opti-
mization process relies on stable latencies. Therefore, we measured
the temporal deviations in the sensor streams which were recorded
during sweeping based on the frames’ time stamps. Both, the depth
and color sensor acquisition takes approx. 33 ms. We measured a
standard deviation of approx. 2.7 ms in the recorded color and depth
sensor stream. Depth and color frames are discarded if their temporal
deviation is larger than twice the standard deviation, which results in
discarding about five percent of the recordings. The tracking system
runs at an internal frequency of 150 Hz and our measurements have
a standard deviation of 0.5 ms in the pose stream. Hence, the latency
difference ∆Ldepth→pose and ∆Ldepth→color can be considered as al-
most constant since our filter chain discards frames with too much
temporal jitter.

Next, we evaluated the three methods for the automatic optimiza-
tion of the latency differences. In particular, we were interested in
two aspects: first, we wanted to evaluate whether the optimizations
based on coplanarity and 3D error minimization differ and, second,
we wanted to evaluate whether curve fitting is a sufficient approxima-
tion of the error functions. Figure 14(a) illustrates the optimization
of the latency differences between the sensor and the tracking system
using the coplanarity constraint and 3D error minimization. The two
optima are very close to each other. This trend was similar in other
evaluations, however, the optima vary slightly for different record-
ings, and, we therefore recommend to perform the optimization
for each calibration. In our system, ∆Ldepth→pose ranges between
-15 ms and -30 ms. In this example, the optimal latency differ-
ence ∆Ldepth→pose is approx. -21 ms. A negative latency difference
indicates that the tracking system runs ahead of the sensor. This
is plausible since the tracking system operates at 150 Hz whereas

(a) (b)

Figure 14: Optimization of the latency differences ∆Ldepth→pose (a) and
∆Ldepth→color (b). The crosses indicate the values of the respective
error function (c.f. Section 4.2) whereas the circles indicate the values
of the fitted curve. The extrema are marked on the horizontal axis.
The maximum of coplanarity (red) is very close to the minimum of
the 3D error (blue) (approx. at -21 ms). For ∆Ldepth→pose, parabolas
were fitted through the points at 0, -25 and -50 ms., for ∆Ldepth→color,
a parabola was fitted through the points at 0, 10 and 20 ms.

the RGBD-sensor operates at only approx. 30 Hz. Further, curve
fitting seems to be a practical choice since the parabolas approxi-
mate the 3D error function and the function for the measurement
of the coplanarity very well. By fitting a parabola, the functions
have to be evaluated at only three samples. Figure 14(b) illustrates
the optimization of the latency difference between the depth and
color sensor stream. In this example, the optimum of ∆Ldepth→color
is approx. 13 ms, which indicates that the color stream is slightly
behind the depth stream. It can be seen that curve fitting is a very
good approximation of the 2D error function too.

Further, we measured the processing times of the proposed opti-
mization methods and compare them briefly to the processing time
for the computation of the calibration using static sampling. We
used a workstation equipped with two Intel® Xeon® ten-core CPU
processors running at 3.10 GHz and 128 GiB of main memory. In the
case of static sampling, the computation of the final calibration takes
approx. 5 seconds for an input of approx. 2000 reference samples.
The number of reference samples depends on the manual capturing
process. In the case of our proposed sweeping approach, the final
calibration is computed off-line from the recorded sweeping. This
step can be divided into two stages: first, the detection and filtering
of the crossing points and, second, the computation of the calibration
which includes the optimization process. The first stage takes approx.
33 seconds for processing approx. 50,000 reference samples. The
second stage takes approx. 5 seconds using the optimization based
on the coplanarity constraint and approx. 8 seconds using the 3D/2D
error minimization, both, using curve fitting as an approximation.
The computation times of our sweeping-based method are higher
than in our initial method [4] since significantly more reference
samples are generated.

5.4 Considerations for 3D Capturing Systems

Our research focuses on the development of 3D capturing systems
for 3D telepresence. We calibrated a setup of 4 Kinect v2 sensors
using the original method based on static sampling and our proposed
sweeping-based method to compare the resulting accuracy in terms
of visual quality. Figure 15 shows screen shots of real-time 3D recon-
structions which were calibrated with our proposed sweeping-based
method and, for comparison, with our original method [4]. Differ-
ences in visual quality of both calibration approaches are largely
imperceptible. The objective of our method is to register the contri-
butions of multiple RGBD-sensors into the shared coordinate system
of the application which is typically linked to a tracking system by a
rigid-body transformation. Hence, the reconstructed remote users
and their interactions with the virtual content are precisely regis-
tered to the shared coordinate system of the application. Figure 16
shows screen shots of a reconstructed remote user who is holding
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Figure 15: Comparison of 3D reconstructions using a capturing system formed by four Kinect v2 sensors. The real-time 3D reconstruction was
performed based on the method described in [5]. For (a) and (c), the calibration was performed using static sampling and took approx. 90
minutes. For (b) and (d), the calibration was performed using our proposed sweep sampling approach and took only approx. 5 minutes. The
optimization was performed using 3D/2D error minimization based on curve fitting. The detail in (c) and (d) shows the region where multiple
sensor contributions overlap. The visual quality of both approaches is very similar, in fact, differences are in general imperceptible.

Figure 16: Screen shots of a reconstructed user captured by a system
of 4 Kinect v2 sensors which were calibrated using our method. The
virtual sword is rendered at the location of the user’s input device which
is tracked by our optical tracking system. Both, the virtual content and
the reconstructed user are registered to the shared coordinate system
of the application which enables a consistent viewing of the scene.

a virtual sword. The sword is rendered at the location of a tracked
input device. Please note that the reconstructed remote user can be
directly and consistently observed by local users. Please also refer
to the video figure.

An important practical aspect of the proposed method is the con-
struction of the checkerboard plate. Our calibration process relies
heavily on a precise mounting of the attached tracking target since
it links the checkerboard crossing points to the coordinate system
of the tracked checkerboard. Rotation and translation errors result
in a misalignment between the local registration of the crossing
points to the tracking system. To ensure the best possible registra-
tion of the (primary) local coordinate system on the checkerboard,
we use a secondary coordinate system (Figure 17). The secondary
coordinate system is defined by an additional set of tracking targets
which are directly glued onto the checkerboard, and, therefore is
very robust and precise. In order to compensate for potential mis-
alignments of the tracking markers, the primary coordinate system
is re-calibrated using the secondary coordinate system as a reference
at start up. Please note that the primary coordinate system can be
also tracked from behind and from the side while the secondary
coordinate system can only be tracked from ahead.

Finally, we would like to mention some additional aspects of our
new approach. Since our approach uses an optical tracking system
based on infrared lighting, a potential source of error is interference.
Fortunately, we did not encounter interference between the Kinect v2
and our tracking system. We also tested two other tracking systems
which could be potentially utilized by our proposed method, namely
those delivered with the Oculus Rift™ and the HTC Vive™. Initial

(a) (b) (c)

Figure 17: Precise alignment of the coordinate system on the checker-
board: (a) The spherical markers (highlighted in green) are attached
to the checkerboard and define the primary local coordinate system of
the checkerboard (red/green/blue). (b) An additional set of flat mark-
ers (highlighted in purple) is glued onto the checkerboard and defines
a secondary coordinate system on the checkerboard (red/green/blue
dashed). (c) Registration of the primary local coordinate system using
the secondary coordinate system as a reference.

experiments revealed strong interference between the Kinect v2 and
the HTC Vive™’s tracking system, however, we did not observe
interference between the Kinect v2 and the tracking system of the
Oculus Rift™. Hence, it would be possible to calibrate Kinect v2
sensors into the coordinate system of the Oculus Rift™ using our
proposed method. A minor limitation is that older sensor types,
like the Kinect v1, cannot be directly calibrated using our sweeping
approach, because the sensor’s depth and infrared stream cannot be
transferred simultaneously from the sensor to the driver, at least in
current versions. In general, static sampling and sweeping can be
used in combination because the only difference lies in the process
of capturing reference samples. For example, it might be valuable
to capture a few additional reference samples using static sampling
in the areas where sweeping is problematic, e.g. at the borders of
the viewing frustum or very close to the sensor. The resulting two
sets of reference samples could then be integrated and merged to a
combined set, using higher quality weights for {Rstatic} and lower
weights for {Rsweep}. However, this would increase the manual
effort but would result in improved accuracy.

6 CONCLUSION AND FUTURE WORK

The quality of 3D capturing systems based on multiple RGBD-
sensors strongly relies on a precise calibration and registration of
the involved sensors. The main contribution of our work is the
development of an entire software pipeline to perform a sweeping-
based calibration and registration of multiple RGBD-sensors. As
a result, our method allows users to calibrate a set of four RGBD-
sensors in a matter of only five to ten minutes in contrast to our
original method [4] using static sampling which required one to



two hours. A fundamental requirement for our sweeping-based
calibration method is the establishment of synchronized reference
samples from non-synchronized data streams. To address this, we
developed and evaluated an automatic optimization process that
computes the unknown latency differences between the RGBD-
sensors and the tracking system. Our evaluation shows that we are
able to register the sensors with an average 3D accuracy of about
3 mm and an average 2D reprojection error of less than 1 pixel for
the Kinect version 2 throughout a large capturing space. While the
achieved accuracy based on sweep sampling is slightly lower than
the accuracy using static sampling, the perceived visual quality of
exemplary 3D reconstructions appears to be very similar.

Additional noise reduction filters for increasing the robustness of
the crossing point detection of sweep sampling have the potential to
increase the accuracy of our method. Furthermore, the calibration
process could be further accelerated by simultaneously capturing
reference frames from all involved sensors at once. However, the
occasionally occurring interferences of overlapping sensors would
have to be considered in the filtering process. Immediate feedback on
the achieved coverage of the capturing space during sweeping would
be certainly a desirable feature of our calibration software in order
to avoid large variations in calibration and registration accuracy.
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