
Eurographics Symposium on Rendering 2003
Per Christensen and Daniel Cohen-Or (Editors)

Efficient and Realistic Visualization of Cloth

Mirko Sattler, Ralf Sarlette and Reinhard Klein

Institute of Computer Science II, University of Bonn, Germany

Abstract
Efficient and realistic rendering of cloth is of great interest especially in the context of e-commerce. Aside from the
simulation of cloth draping, the rendering has to provide the "look and feel" of the fabric itself. In this paper we
present a novel interactive rendering algorithm to preserve this "look and feel" of different fabrics. This is done
by using the bidirectional texture function (BTF) of the fabric, which is acquired from a rectangular probe and
after synthesis, mapped onto the simulated geometry. Instead of fitting a special type of bidirectional reflection
distribution function (BRDF) model to each texel of our BTF, we generate view-dependent texture-maps using a
principal component analysis of the original data. These view-dependent texture maps are then illuminated and
rendered using either point-light sources or high dynamic range environment maps by exploiting current graphics
hardware. In both cases, self-shadowing caused by geometry is taken into account. For point light sources, we also
present a novel method to generate smooth shadow boundaries on the geometry. Depending on the geometrical
complexity and the sampling density of the environment map, the illumination can be changed interactively. To
ensure interactive frame rates for denser samplings or more complex objects, we introduce a principal component
based decomposition of the illumination of the geometry. The high quality of the results is demonstrated by several
examples. The algorithm is also suitable for materials other than cloth, as far as these materials have a similar
reflectance behavior.

Categories and Subject Descriptors (according to ACM
CCS): I.3.3 [Computer Graphics]: Bitmap and framebuffer
operations I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; Color, shading, shadowing, and tex-
ture

1. Introduction

In addition to the microstructure, the mesostructure of a
fabric is of great importance for the reflectance behavior
of cloth. The mesostructure is responsible for fine-scale
shadows, occlusions, specularities and subsurface scatter-
ing effects. Altogether these effects are responsible for the
"look and feel" of cloth. There are essentially two tech-
niques of cloth rendering according to the way in which
mesostructure is captured. The first approach explicitly mod-
els the mesostructure of the fabric in detail and renders it us-
ing different lighting models and rendering techniques 21, 13

Although these algorithms produce impressive results and
some of them are already applicable at interactive frame
rates, using these methods, it is difficult to reproduce the spe-
cial appearance of a given fabric. In the second approach the

reflectance properties of a given real fabric are measured and
then used to generate realistic images11, 43. As shown by11,

Figure 1: Wool shirt rendered under natural illumination
(Uffizi street scene).
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the most important optical parameters of opaque materials
including their mesostructure can be described by the bidi-
rectional texture function (BTF). This six-dimensional func-
tion describes how a planar texture probe changes its appear-
ance when illuminated and viewed from different directions,
as shown on the bottom row of figure 4. The resulting tex-
ture probes capture all effects caused by the mesostructure
like roughness, self-shadowing, occlusion, inter-reflections
and subsurface scattering. Furthermore, the BTF describes
how the texture has to be filtered when viewed from dif-
ferent directions. Therefore, in order to achieve the most
realistic visualization of a given cloth, we follow the sec-
ond approach based on measured BTF data. For the illumi-
nation we provide two different methods: first by point or
directional light sources. Second, illumination by utilizing
high dynamic range environment maps. Both techniques are
of interest, since on one hand, illuminating the material by
point light sources allows the user to inspect the material un-
der a controlled lighting situation and reveals the mesostruc-
ture nicely. Here, we also introduce a new method, to gen-
erate smooth shadow boundaries on polygonal meshes. On
the other hand, people can judge and recognize the mate-
rial more easily under natural illumination than under the
simplified and artificial one provided by point light sources.
Our algorithm uses a decomposition of the illumination of
the geometry, to ensure the change of the environment maps
at interactive frame rates. In addition to the mesostructure
captured by the BTF, a further essential ingredient for the
realistic rendering of cloth are macroscopic shadows caused
by self-shadowing of the object. These shadows enhance es-
pecially the draping of the fabrics. The main contribution of
this paper is a new algorithm for the accurate realistic real-
time visualization of a wide variety of cloth, including highly
structured materials like corduroy or knitwear based on mea-
sured reflection properties. Special features of this algorithm
are

• Preserving the "look and feel" of the real cloth.
• Support of point and directional light sources as well as

image based lighting at interactive frame rates.
• A simple, but efficient technique to calculate dynamic

shadows caused by point or directional light sources with
smooth shadow boundaries on polygonal meshes

• A new efficient decomposition technique for illumination
of geometry with BTF data, including self-shadowing.

The rest of the paper is organized as follows: in section
2 we briefly describe related and previous work. Section
3 describes our measurement setting and discusses the
postprocessing of raw image data. Section 4 describes
our BTF-Renderer for point and directional light sources
including a special method to include macroscopic shad-
ows due to self-shadowing on the cloth and to generate
smooth shadow boundaries. In section 5 we extend the
methods in order to illuminate the clothes using high
dynamic range environment maps. Here we describe also a
decomposition method for the illumination of a geometry.

Section 6 presents some result images and reports on storage
requirements and frame rates before concluding in section 7.

2. Related Work

2.1. Modelling Mesostructure

Previous work in cloth rendering falls into two main cat-
egories. The first is the explicit modelling of the underly-
ing mesostructure and rendering it using volumetric tech-
niques. Modelling has the general advantage of being able to
create complete artificial results for non-existing materials.
While certain approaches are not real-time capable21, 22, 55,
some interactive methods exist which use special shading
models13, 12. Up to now, these algorithms are mainly used
for knitwear and cannot handle materials like e.g. corduroy.
Image based lighting and macroscopic self-shadowing are
neglected.

2.2. Measuring reflection properties

Using measured reflection properties of real world surfaces
naturally implies higher realism. Effects, which give impor-
tant visual clues for material identification, like microstruc-
ture self-shadowing or scattering are preserved. On the other
hand careful measuring is required.

Light fields

Capturing images of models under different lighting condi-
tions and from different viewing angles automatically cap-
tures the reflection properties and yields very realistic ren-
derings of the objects, although using these so called light
field approaches14, 7, 40, 19, it is not possible to change the
lighting conditions. A general drawback of these approaches
is that the measured material properties are coupled with a
fixed geometry, thus not allowing to change the geometry or
the material without remeasuring the object.
Malzbender et al.42 introduced polynomial texture maps,
where the coefficients of a biquadratic polynomial are stored
per texel, and used to reconstruct the surface color un-
der varying lighting conditions. Lensch et al.39 proposed a
method to capture spatially varying materials on known ge-
ometry, by finding basis BRDFs for reconstruction on a per-
pixel level. These approaches can also be applied for cloth.

BRDFs

BRDFs are four dimensional functions and were introduced
by Nicodemus46. These functions describe the reflection dis-
tribution at a surface point depending on incoming and out-
going light directions. BRDFs overcome the limitations of
geometry coupling, fixed lighting and viewing directions.
Early results approximated a single BRDF by a Ward37 or
Lafortune36 model. Ashikhmin2 e.g. produces good results
for velvet by incorporating a special shadowing term. Kautz
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and McCool31 approximate the four-dimensional BRDF by a
product of two two-dimensional functions splitting viewing
and light direction, which are stored as textures and com-
bined during the rendering step. McCool et al.44 improved
the above method by employing homomorphic factorization,
leading to approximations with user controllable quality fea-
tures. The above approaches were further improved50, 51, 38,
which all enable the BRDF to be lit by image based illumi-
nation while relying on different approximation functions.
Unfortunately, their representations cannot easily be applied
for realtime rendering of spatially varying materials.

BTFs

BTFs were introduced by Dana et al.11. A planar surface
sample is lit by a directional light source and photographed
from different directions. Thus the resulting images are a
function of viewing and illumination direction, hence cap-
turing effects caused by the mesostructure of a surface, like
roughness, self-shadowing, occlusion, inter-reflections, sub-
surface scattering and color bleeding. Registering the differ-
ent images of the BTF the data can be considered as a 6
dimensional reflectance field

L = L(x,y,θi,φi,θo,φo)

which connects for each surface point (x,y) of a flat sam-
ple the outgoing to the incoming radiance in the direction
(θo,φo), (θi,φi) respectively. The measurement is done in
RGB space, wavelength changes and time dependent ef-
fects like fluorescence are ignored. Due to the computational
complexity of the 6 dimensional function only a few real-
time rendering algorithms exist32, 43. To achieve interactive
rates, Kautz et al. use an approximation to an anisotropic
version of the Blinn-Phong model and to the Banks model.
In his recent work McAllister et. al. represented the 6D-
reflectance field as a spatially varying BRDF. At each dis-
cretizised surface position a Lafortune model is fitted and
the parameters are stored in a texture map, which is called
SBRDF. This representation can efficiently be evaluated
in current graphics hardware. In addition to point and di-
rectional light sources their algorithm also supports image
based illumination4, 45, 20, 15. Though their algorithm yields
good results for materials with low depth range, it proves un-
satisfactory for more structured materials with high depth,
as even for a high number of lobes the Lafortune model is
hardly capable of capturing the variation in the reflectance
behavior caused by the mesostructure.

2.2.1. Measuring and synthesizing BTF data

In their pioneering work, Dana et. al. measured 61 samples
of real-world surfaces and made them publicly available in
the CUReT26 database. Unfortunately, their data is not spa-
tially registered. In order to demonstrate the enhancement
over common texture mapping, we manually performed the
registration for a small number of samples and mapped them

Figure 2: The images show texture mapped cubes using the
post-processed CUReT BTF data sample crumpled paper.
In the left image only a frontal viewed texture is applied. The
right image uses the BTF data set.

onto a cube, as shown in figure 2. Self-shadowing and self-
occlusion of the mesostructure on the surface are clearly vis-
ible. A drawback of the CUReT database is that it contains
some graphical errors, caused by frame-grabber artifacts or
reflections of the robot sample holder plate visible in the raw
data. Our solution to these problems is described in section
3.1.
Synthesizing BTF data addresses two problems. If only a
discrete set of BTF samples is available it allows to synthe-
size the continuous BTF and furthermore it allows to synthe-
size BTF data of arbitrary size. Liu et al.41 registered some
samples from the CUReT database using statistical proper-
ties and appearance preserving procedures. Further methods
to synthesize BTF data on a surface is described in Tong et
al.53 using 3D textons or using histogram models10. The ad-
vantages of these methods are the low memory requirements
and that the overall structure and appearance is preserved.
On the other hand, by introducing statistical and random
components these methods destroy certain mesostructures,
hence changing the BTF significantly and are not suitable
for all kinds of materials, see e.g.53. In order to preserve
the mesostructure we use the measured image data, which
is sampled dense enough to not require any synthesis and
nevertheless stored in a compact form in memory. Because
of the tileability of our fabrics the size of the measured probe
is sufficient for our needs.

3. Measurement

This section describes the process of measuring and post-
processing the bi-directional texture function.

3.1. Setup and Data acquisition

Our setup is designed to conduct an automatic measurement
of a BTF that also allows the automatic alignment and post-
processing of the captured data. We restrict ourselves to pla-
nar samples with the maximum size of 10×10 cm2. In spite
of these restrictions we are able to measure a lot of differ-
ent material types, e.g. fabrics, wallpapers, tiles and even car
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interior materials. As shown in figure 3, our laboratory con-
sists of a HMI (Hydrargyrum Medium Arc Length Iodide)
bulb (broncolor F575), a robot (intelitek SCORBOT-ER4u)
holding the sample and a rail-mounted CCD camera (Ko-
dak DCS 760). Table 1 shows two different samplings H1
and H2 of the halfspace of point X above the sample. Ac-
cording to the varying reflection properties of each sample,
the sampling must be sparser or denser. We used a maxi-
mum of n = 81 unique directions for camera and light posi-
tion as shown in table 1, resulting in an approximately equal
sampling of the hemisphere. Figure 4 shows three measured
samples: CORDUROY, PROPOSTE and WOOL. 6561 raw
images were captured for each sample, each 6 megabytes in
size (lossless compression) with a resolution of 3032×2008
pixels (Kodak DCR 12-bit RGB format). To ensure the cor-
rect correspondence of the measured reflection properties to
a fixed surface position on the sample, we pay close attention
to minimize positioning errors.

θ1 [◦] ∆φ [◦] θ2 [◦] ∆φ [◦] No. of images

0 −

∗ 0 −

∗ 1
17 60 15 60 6
34 30 30 30 12
51 20 45 20 18
68 18 60 18 20
85 15 75 15 24

Table 1: Two different sampling densities H1 and H2 of view-
ing and illumination angles of the BTF database. ∗= only
one image taken at φ = 0◦

Figure 3: Measurement setup consisting out of an HMI
lamp, a CCD camera and a robot with a sample holder.

3.2. Postprocessing

After the measurement the raw image data is converted into
a BTF representation, i.e. the perspectively distorted images

Figure 4: Measured BTF samples; from left to right
(top row): CORDUROY, PROPOSTE. Bottom row: WOOL
frontal and perspective view.

Figure 5: Sample holder with the PROPOSTE sample. The
left image shows the frontal view (θ = 0◦, φ = 0◦); the right
image shows (θ = 60◦, φ = 342◦). White point and border
markers are visible.

must be registered. In this representation a complete set of
discrete reflectance values for all measured light and viewing
directions is assigned to each texel of a 2D texture. Registra-
tion is done by projecting all sample images onto the plane
which is defined by the frontal view (θ = 0,φ = 0). To be able
to conduct an automatic registration we have attached point
and borderline markers to our sample holder plate, see figure
5. After converting a copy of the raw data to black-and-white
(8-bit TIFF), we use standard image processing tools, to de-
tect the markers during the measurement process. We restrict
ourselves to the common 8-bit RGB texture format. To take
advantage of the linear part of the camera response curve, we
choose the central 8-bit range of the 12-bit images. As we
use a fixed focal length during one measurement, the maxi-
mum effective resolution of the sample holder in the image
is 1100× 1100 pixels. After all transformations are carried
out, we rescale all images to an equal size of 1024× 1024
pixels, which we call normtextures (N). After this postpro-
cessing step, the data amount of 167 gigabytes captured by
the camera CCD chip is reduced to roughly 20 gigabytes of
uncompressed data. By measuring planar probes of a cer-
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tain size, we rely on the tileablility of our fabrics. There-
fore, a manually chosen region of interest (approximately
550× 550 pixels) is cut out and resized. To create the final
normtextures (256×256 pixels in size) linear edgeblending
is applied, which reduces the usual tiling artifacts.

4. Illumination using point and directional light sources

To allow a closer inspection of the measured fabrics, single
point or directional light sources can be used. The easiest
way to texture an object with a BTF texture would be to
store a complete database in memory and fetch the nearest
measured BTF image to the current viewing and lighting
direction. This way, the textures would approximately
be viewed under the same angle they were acquired and
therefore artifacts due to anisotropic sampling are avoided.
The texturing can be done on a per face basis, introducing
edge artifacts or on a per-vertex basis using blending, as
described by Chen7. Unfortunately the size of the database
of one sample at a resolution of 256× 256 pixels exceeds
1230 megabytes, which is not practical on today’s hardware.
Next, we present our algorithm that overcomes this problem.
The main idea is, to replace for each viewing direction
the BTF defined by the normtextures by a series of basis
textures obtained by using a principal component analysis.
Utilizing only a few components (≤ 16) of this series, the
texture can be reconstructed at runtime.

4.1. PCA

Principal component analysis29, 33, 48 has been widely used
to compress image data47. Ramamoorthi49 showed by an an-
alytic PCA construction, that using about five components
is sufficient to reconstruct lighting variability in images of a
lambertian object.
Our measured samples all have a certain three-dimensional
mesostructure, which leads to significantly varying surface
appearance for changing viewing directions. To ensure a
pixel position coherence, thus coping with the varying height
of a surface position on the sample, we do a principal compo-
nent analysis for each of the n viewing directions separately.
We call these directions view slots S j, j ∈ (1 . . .n). Thus in
these slots the viewing direction is fixed so that only the light
direction varies, therefore the analysis is done only on the
effects caused by the changing illumination. The n norm-
textures Ni j, i ∈ (1 . . .n) per view slot j are represented as
vectors Xi j = (r1,1,g1,1,b1,1, . . . ,rh,w,gh,w,bh,w) of dimen-
sion 3× h×w, where h and w are the height and width of
the normtextures, respectively. We perform a PCA of these
vectors, resulting in a series of eigenvalues λ1 j, . . . ,λn j and
eigenvectors E1 j, . . . ,En j which corresponds to eigennorm-
textures B1 j, . . . ,Bn j for this slot. The first c < n eigennorm-
textures approximate any of the original normtextures Ni j in
such a way that the sum of the squares of the projection er-
rors onto the affine subspace spanned by {B1 j, . . . ,Bc j} is

Figure 6: Texture reconstruction using PCA. From left to
right (top row): original normtexture, 16, 10, 5 components.
Bottom row: difference images to the original, see text for
details.

minimized

Ni j ≈
c

∑
k=1

pik jBk j, i = 1 . . .n. (1)

The coefficients pik j = Ni j · Bk j are weights, where · de-
notes the standard scalar product in R

3×h×w. Figure 6 gives
examples for reconstructed textures with a different num-
ber of eigennormtextures, and also shows difference im-
ages. Therefore, we calculated the length of the 8-bit RGB
error vector between the original normtexture and the re-
constructed images. Green color indicates a length of zero,
whereas red indicates a length of 255 units. Figure 7 shows
the absolute eigenvalues for all components of three differ-
ent view slots. The decay of the absolute values indicate
the statistical dimensionality of our given normtextures. As
the eigenvalues decrease rapidly in all our examples, c = 16
components were sufficient to reproduce the look and feel of
the sample materials. Note, that performing a principal com-
ponent on the different view-slots reduces the size of our
data set from about 1230 megabytes to 260 megabytes per
sample for a 256×256 resolution.

4.2. Real-time algorithm

In this section we describe the algorithm to reconstruct the
texture T for a vertex V of a given triangle mesh at runtime,
while using a single point or directional light source. The
emitted radiance g from the light source is stored as a three-
component RGB float vector. We first compute the light and
view vector (l̂, v̂) for the vertex V . Because of the memory
requirements for storing the raw normtextures, we now use
the representation of our textures as a series of basis norm-
textures Bk j . Choosing the nearest slot j corresponding to v̂
and the weights pik j corresponding to l̂ the texture Tj can be
reconstructed.

Tj ≈ g
c

∑
k=1

pik jBk j (2)
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Figure 7: Eigenvalues for the PROPOSTE sample in three
different view slots j (θ = 0◦, φ = 0◦), (θ = 45◦, φ = 300◦),
(θ = 75◦, φ = 45◦).

Because in general l̂ does not match a measured direction
exactly we use our known samplings H1 or H2 from the mea-
surement to compute the four nearest measured light direc-
tions im,m ∈ (1 . . .4) from our texture database for bilinear
interpolation with the interpolation weights τm and with Nim j
denoting the reconstructed textures corresponding to im:

Tj ≈ g
(

τ1Ni1 j + τ2Ni2 j + τ3Ni3 j + τ4Ni4 j
)

= g
4

∑
m=1

τmNim j

= g
4

∑
m=1

τm

c

∑
k=1

pimk jBk j

= g
c

∑
k=1

(

4

∑
m=1

τm pimk j

)

Bk j

= g
c

∑
k=1

γk jBk j (3)

This means, that the texture Tj is simply a weighted sum of
basis textures.

Tj = g · (γ0 jB0 j + γ1 jB1 j + . . .+ γc jBc j) (4)

We use a fragment program to accomplish the reconstruction
of the texture with c = 16 components using a ATI Radeon
9700. Therefore, γk j is transferred to the GPU for each ver-
tex and when blending the three resulting textures per trian-
gle in a three pass rendering, a smooth transition is ensured7.
If also view interpolation is desired, denote the four nearest
view slots as jm,m ∈ (1 . . .4) with the corresponding inter-
polation weights ωm. Following (3) we obtain:

T = ω1Tj1 +ω2Tj2 +ω3Tj3 +ω4Tj4

= ω1

c1

∑
k=1

γk j1 Bk j1 +ω2

c2

∑
k=1

γk j2 Bk j2

+ ω3

c3

∑
k=1

γk j3 Bk j3 +ω4

c4

∑
k=1

γk j4 Bk j4 (5)

Note, that in the case of j1 6= j2 6= j3 6= j4 four different
eigennormtexture sets Bk jm are needed.

4.3. Incorporating Shadows

In the context of cloth rendering, incorporating shadows and
geometry self-shadowing is crucial for realistic rendering.
Using point and directional light sources implies render-
ing hard shadow boundaries. An efficient method for this
purpose are the well known shadow maps54. The calcula-
tion is hardware accelerated, e.g. through several OpenGL
extensions25. Nevertheless, a common problem with shadow
mapping is projection aliasing1. Increasing depth buffer size
and precision, as well as polygon offsets35 reduce these ar-
tifacts. Further improvements could be made using perspec-
tive shadow maps as introduced by Stamminger et. al52. Un-
fortunately, in spite of self-shadowing these artifacts are still
visible, and destroy the realistic appearance of cloth. There-
fore, we use volumetric shadows, as proposed by Crow9.
A lot of work was done in this fieldm including hardware
acceleration24, 17, 3, 34, 18, 6, 23, 5, 6, 23, 5 Nevertheless, there is a
further problem that leads to disturbing artifacts in cloth ren-
dering: the shadow boundary always coincides with the sil-
houette of the mesh as seen from the light source. This sil-
houette is defined by those edges in the mesh which are in-
cident to one front-facing and one back-facing triangle with
respect to the light source position, respectively, see figure 8
left side. Therefore, in an arbitrary triangle mesh the silhou-
ette edges do not define a smooth path but instead show a
zigzag pattern. Note, that this is independent of the accuracy
of the shadow computation and is worse for low-resolution
meshes which are common in cloth modelling. Furthermore,
if the light source moves, the silhouette edge jumps between
adjacent triangles leading to disturbing artifacts. One way
to cope with these problems is to consider the mesh as a
smooth surface. This is actually also assumed during render-
ing, when interpolating the vertex normal vectors for light-
ing calculations. Using this observation leads to a simple so-
lution to the problem. If the sign of the scalar product be-
tween the normalized vertex normal n̂1 and the normalized
light-vector l̂1 of V1 and n̂2, l̂2, respectively, changes along
an edge V1V2 of a triangle , the shadow boundary lies be-
tween these two vertices and the position of this boundary
(P) on an assumed smooth surface can be estimated by the
proportion of the angles at the two vertices V1 and V2, see fig-
ure 9. Therefore, for each vertex V of a triangle we compute
one-dimensional texture coordinates

(u)V = (1.0+ cos(α+∠(n̂V , l̂V )))/2.0, (6)

into a one-dimensional 1D half black and half white texture
of 1024 pixels size. Using this texture leads to the smooth
shadow boundary. In order to generate soft boundaries this
texture can be blurred. α is an offset, to compensate the pop-
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Figure 8: Shadow boundaries. Left image shows the zigzag
behaviour, which is gone in the right image using our tech-
nique.

Figure 9: Computing position P of the shadow boundary
between V1 and V2.

ping artifacts, caused by the silhouette edge jumps. We have
chosen α = 15◦ for our high resolution pair of trousers.
The combination of this simple texturing method with the
shadow volume algorithm in the form of blending, deliv-
ers nice results as shown in figure 8 right side. Note, that
the presented algorithm is also well suited for rendering dy-
namic meshes with macroscopic shadows, since the needed
computations and the shadow volumes can be carried out
each frame easily.

5. Image based illumination

In this section we show how to illuminate the geometry using
high dynamic range environment maps16, 15, 27. The next four
subsections describe the numerical integration of the render-
ing equation, the computation of visibility maps, the runtime
algorithm for using image based illumination and a method
to decompose the illumination of the geometry, to allow a
faster change of the environment map.

5.1. Numerical integration of the Rendering Equation

Following the rendering equation 30, 28 at a surface point x
the outgoing radiance Lo is given by

Lo(x,w) = Le(x,w)+
∫

S
fr(x,w′,w)Li(w′)V (x,x′)G(x,x′)dA′, (7)

where w is the outgoing direction, Le the emitted radiance, S
the hemisphere domain over x, fr the BRDF, x′ another sur-

Figure 10: Visibility map computation. Visibility map (left)
with rendered color-coded lookup environment map (mid-
dle). White color in the visibility map stands for occlusion
caused by the mesh. On the right side a HDR environment is
shown, which is mapped onto the color-coded one.

face point, w′ the direction from x′ to x, Li the incident ra-
diance, V (x,x′) the visibility between the two surface points
and G(x,x′) a geometrical term defined as

G(x,x′) = −
(~w′ ·~n′)(~w′ ·~n)

‖x′− x‖2 (8)

with the normal n at x and n′ at x′, respectively. For our
purposes we set the emitted radiance Le(x,w) = 0 and do not
compute any inter-reflections. We discretize the hemisphere
domain using a hemicube8, which leads to

Lo(x,w) ≈ ∑
α

fr(x, pα→x,w)Li(pα→x)V (x, pα)G(x, pα),

(9)

where pα is a pixel of the hemicube.

5.2. Visibility map pre-computation

Because we use image based illumination and store our ra-
diance values in an environment map we have to provide a
lookup into this map. Therefore, we precalculate visibility
maps M for each vertex. These maps store a discretization
of the hemisphere of the vertex V , which is a hemicube with
its top side perpendicular to the vertex normal. Figure 10
(left) shows an unfolded hemicube. Using a color-coded en-
vironment map (figure 10 middle) a look-up table into a high
dynamic range map (figure 10 right) is created. This allows
easy exchange of the environment map. By also rendering
the geometry itself macroscopic self-shadowing is included.
Because a pixel pα represents a certain direction (V → pα)
and does not necessarily match one of the measured direc-
tions, we subdivide our visibility map into n direction pat-
terns, as seen in the figure 11, and assign the four nearest
measured directions in respect to (V → pα) to pα. This al-
lows us to do a bilinear interpolation with the interpolation
weights hdk ,k ∈ (1 . . .4) for all four directions dk. A visibil-
ity map pixel now stores the following information:

• visibility of a pixel of the environment map and if it is
visible, the position of this pixel in the map

• four nearest measured directions in respect to the direction
represented by this pixel

• corresponding interpolation weights
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Figure 11: Visibility map (64× 64 resolution) direction en-
coding with n grey levels. From left to right: Nearest, second
nearest, third and fourth nearest direction.

5.3. Real-time algorithm using image based
illumination

It would require n = 81 multi-texturing passes for each trian-
gle to incorporate all measured light directions, which can-
not be done in real-time. Therefore, we now show how to
use the visibility maps and our representation as a series of
basis normtextures, to illuminate a triangle mesh using high
dynamic range images. First the view vector v̂ for each ver-
tex V is calculated and the nearest view slot j is chosen. At
this point we have to evaluate the radiance gi coming out of
our n measured directions at each vertex. Similar to equation
2 we now calculate the texture Tj as follows:

Tj ≈
n

∑
i=1

giNi j

=
n

∑
i=1

gi
c

∑
k=1

pik jBk j

=
c

∑
k=1

(

n

∑
i=1

gi pik j

)

Bk j

=
c

∑
k=1

γ∗kjBk j (10)

Introducing a multiplication factor f , denoting the exposure
level of the high dynamic range map, the texture T j is recon-
structed very similar to 4:

Tj = f · (γ∗0jB0 j + γ∗1jB1 j + . . .+ γ∗cjBc j) (11)

Note, that now γ∗kj is also a three component float vector.
In order to compute gi for a vertex V , for all pα ∈ MV a
lookup into the environment map at the position stored in
pα is performed. The radiance r stored at that position is as-
signed to gdk and weighted with hdk . Here dk,k ∈ (1 . . .4) de-
notes the four directions stored with pα as described above.
For view interpolation the same calculations as in (5) have
to be applied.
γ∗kj is computed for all vertices Vζ,ζ ∈ (1 . . .N) where N is
the number of vertices of the geometry. Thereby we intro-
duce a new vector U holding all γ∗kjζ:

U = (γ∗111 . . .γ∗c11, . . . ,γ
∗

1nN . . .γ∗cnN) (12)

with the dimension 3× c×n×N. This vector has to be cal-
culated once per environment map and allows the real-time
change of the viewing position and of the exposure f .

A drawback of this method is, that changing the environ-
ment map implies a complete new calculation of gi for all
vertices. This heavily depends on the visibility map reso-
lution and the number of vertices and therefore on the hard-
ware rendering speed. Reducing the visibility map resolution
adaptively to achieve interactive changing rates introduces
under-sampling artifacts of the environment map during mo-
tion, which can be compensated if the change stops, by using
an adaptively higher resolution for the visibility map.

5.4. Decomposition of the Environment Map

To overcome the problems mentioned in the last section we
propose a decomposition method. For this we again use a
principal component analysis. As aforementioned, we have
to evaluate all incoming radiance, if the object is rotated or
the environment is changed. Daily observation shows that
e.g. rotation of an object under natural illumination leads
only to slight irradiance changes on the object surface, if the
rotation angle is small.
The key idea is that we now compute a set of vectors
Ua,a ∈ (1...A), where A denotes the number of different en-
vironment maps used (see also subsection 5.3). Performing a
PCA on these vectors, results in a series of new eigenvalues
and eigenvectors. The latter correspond to eigenweightsets
W1, . . . ,WA. The first e < A eigenweightsets can be used to
approximate any of the original weightsets Ua:

Ua ≈
e

∑
k=1

oakWk, a = 1 . . .A. (13)

The coefficients oak = Ua ·Wk are weights, where · denotes
the standard scalar product in R

3×c×n×N .
To test our method we rotate an object relative to the environ-
ment and compute the vector U for each rotation step. This is
equal to using several different environment maps. By using
ν = 12◦ degree steps we obtain A = 30 weight sets. We use
a high resolution environment and visibility map (256×256
pixels). A comparison between reconstructed (e = 5 eigen-
vectors) and original images is shown in figure 13. We calcu-
lated the length of the RGB error vector between the original
and the reconstructed images. Green color indicates a length
of zero, whereas red indicates a length of 255 units. Increas-
ing the number e of used eigenweightsets clearly minimizes
the error. Figure 12 shows the weights oak for all A = 30 sets
for all eigenvectors. Note the oscillation denoting the rota-
tion around the object axis. As a result, we now can rotate
the object or the environment, hence changing the lighting
situation and the view at interactive frame rates, by recon-
structing the complete weight set U for a desired rotation
angle δ ∈ (0 . . .360◦) at runtime.

6. Results

We implemented our method within an interactive hardware-
accelerated OpenGL system. The results were obtained un-
der Windows 2000 on a 1.5GHz Athlon with a ATI Radeon

c© The Eurographics Association 2003.

174



Sattler, Sarlette and Klein / Efficient and Realistic Visualization of Cloth

-200

-150

-100

-50

0

50

100

150

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

animation step

w
e

ig
h

t

component 1 component 2 component 3 component 4 component 5

Figure 12: Change of the weights for each component dur-
ing the animation. Note the oscillations, denoting the rota-
tion of the object.

9700 graphics accelerator. For the texture reconstruction
we used a fragment program (GL_ARB_fragment_program)
and multi-texturing. The Eigentextures for all samples have a
resolution of 256×256 and need about 260 megabytes mem-
ory per sample. Figure 1 and all images in figure 14 were
rendered at a 1280×960 resolution. Our used meshes range
from nearly 800 vertices to 9200 vertices. Table 2 gives an
overview over the frame rates achieved and preprocessing
times needed. While enabling the decomposition, we get
about 2.0 frames per second, including the dynamic change
of illumination and camera position, instead of the recalcula-
tion time of 3700 milliseconds per change for the shirt mesh
(900 vertices). The algorithm is capable of rendering several
BTF sets onto one geometry, if proper texture coordinates
and material id’s per vertex are supplied and sufficient sys-
tem memory is available (see also the avatar in figure 14).
The algorithm handles non-fabric materials (WALLPAPER,
STONE) as well, as can be seen in figure 14 in the second
row.

mesh vertices illum. average HEM VPT
name method frame update

rate time
[FPS] [msec] [msec]

shirt 900 PLS 9.3
shirt 900 HEM 9.5 3.8k 8.0k
shirt (high) 9208 PLS 1.3
shirt (high) 9208 HEM 1.1 38.5k
pair of trousers 833 PLS 9.5
pair of trousers 833 HEM 10.1 3.7k 7.1k
pair of trousers (high) 5222 PLS 2.1
pair of trousers (high) 5222 HEM 2.1 23.2k 205.5 k

Table 2: Results for different meshes and illumination
methods. The frame rates were obtained using four times
view blending with a total of 16 PCA components.
PLS=point light source, HEM=high dynamic environment
map, VPT=visibility preprocessing time.

7. Conclusions

We have presented a method to capture and visualize reflec-
tion properties of cloth at interactive frame rates. Our ap-
proach decouples reflection properties from geometry while
preserving the "look and feel" of a fabric, including impor-
tant mesostructural features. The image based illumination
allow the further usage in a desired clothing shop environ-
ment. With the presented decomposition method, interactive
change of viewing and illumination is possible for static ob-
jects. While using single point or directional light sources we
introduced a simple but effective method to compute smooth
shadow boundaries. With the emersion of new graphic hard-
ware in the near future, which supports more multi-texturing
operations per pass we are able to do the four times view
blending in one pass and/or increase the number of used
PCA components. We are confident, that this will allow real-
time frame rates. Future work will include the handling of
deformable objects and dynamic meshes.
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Figure 13: Top row: PROPOSTE sample in Uffizi environment, left using BTF data, right normal texturing. In the right image
the mesostructure is gone. Next rows: decomposition of the illumination of the geometry (from second to bottom row) original,
reconstructed and difference error images. In the error image green denotes no error, while red denotes maximum error, see text
for details. From left to right: 2,3,4 and 5 PCA components were used. The reconstruction was done with e = 5 eigenweight
sets.
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Figure 14: Result images. Top row (from left to right): CORDUROY sample in Kitchen and RNL environment, PROPOSTE in
Kitchen; next row: PROPOSTE in Building, WALLPAPER with point light source and STONE in Uffizi. Next row: WOOL and
CORDUROY with avatar at Beach, with point light source and in Uffizi. Bottom row: WOOL sample in Grace environment, left
using BTF data, right normal texturing. Notice the angular illumination dependence.
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