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Abstract. Complete orthogonal systems of monogenic polynomials over 3D

prolate spheroids have recently experienced an upsurge of interest due to their
many remarkable properties. These generalized polynomials and their appli-

cations to the theory of quasiconformal mappings and approximation theory

have played a major role in this development. In particular, the underly-
ing functions are of three real variables and take on values in the reduced

quaternions (identified, respectively, with R3), and are generally assumed to

be null-solutions of the well-known Riesz system in R3. This paper introduces
and explores a new complete orthogonal system of monogenic functions as so-

lutions to this system for the space exterior of a 3D prolate spheroid. This will
be done in the linear spaces of square integrable functions over R. The repre-

sentations of these functions are explicitly given. Some important properties

of the system are briefly discussed, from which several recurrence formulae for
fast computer implementations can be derived.

1. Introduction

A prolate spheroid is a quadric surface generated by rotating an ellipse about its
major axis. In general, the boundary value problems involving prolate spheroidal
bodies (including their limiting configurations – the sphere, and thin circular disk)
are treated in prolate spheroidal coordinates (µ, θ, ϕ). Here µ is the radial term
with µ > 0, θ ∈ [0, π) is the asymptotic angle with respect to the major axis, and
ϕ ∈ [0, 2π) is the rotation term.

In prolate spheroidal coordinates (cf. E. Hobson [13], N. Lebedev [16]), the
Cartesian coordinates may be parameterized by x = x(µ, θ, ϕ) so that

x0 = ca cos θ, x1 = cb sin θ cosϕ, x2 = cb sin θ sinϕ(1.1)

where c > 0 is the eccentricity of the generating ellipse, and a = coshµ, b = sinhµ,
are respectively, the semimajor and semiminor axis of this ellipse. For simplicity
we choose c = 1. Using these transformation relations the surfaces of revolution for
which µ is the parameter consist of the confocal prolate spheroids

S :
x2

0

a2
+
x2

1 + x2
2

b2
= 1.(1.2)

Equation (1.2) represents a prolate spheroid in Cartesian coordinates. Accordingly,
the surface of S is matched with the surface of the supporting spheroid µ = µ0 if
we put cosh2 µ0 = a2 and sinh2 µ0 = b2.
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The Laplace equation in prolate spheroidal coordinates (1.1) is given by

∆3U =
1

sin2 θ + sinh2 µ

(
∂2U

∂µ2
+
∂2U

∂θ2
+ cothµ

∂U

∂µ
+ cot θ

∂U

∂θ

)
+

1

sin2 θ sinh2 µ

∂2U

∂ϕ2
= 0.

The previous equation is separable in prolate spheroidal coordinates. The corre-
sponding solutions are the well-known prolate spheroidal harmonics [7, 13], which
are a combination of products of spherical functions: U := Ξ(µ) Θ(θ) Φ(ϕ), where
Ξ(µ), Θ(θ) and Φ(ϕ) satisfy the differential equations

d2Ξ(µ)

dµ2
+ cothµ

dΞ(µ)

dµ
−
[

l2

sinh2 µ
+ n(n+ 1)

]
Ξ(µ) sinhµ = 0,

d2Θ(θ)

dθ2
+ cot θ

dΘ(θ)

dθ
+

[
n(n+ 1)− l2

sin2 θ

]
Θ(θ) sin θ = 0,

d2Φ(ϕ)

dϕ2
+ l2Φ(ϕ) = 0,(1.3)

where n is a constant and l is a parameter introduced during the separation of
variables method. The periodicity of Φ requires that l is a positive integer or zero.
Hence solutions to the equation (1.3) are either cos(lϕ) or sin(lϕ). The solutions
Θ(θ) and Ξ(µ) are given, respectively, by P ln(cos θ) or Qln(cos θ), and P ln(coshµ)
or Qln(coshµ). Here P ln and Qln are the Ferrer’s associated Legendre functions of
the first and second kinds of n-th degree and l-th order. In this assignment, the
sign convention of including the Condon-Shortley phase is adopted (even though
the reader should pay attention that in the topic of associated Legendre functions
different authors may employ different conventions). When the argument is greater
than unity, we define the Ferrer functions as

P ln(coshµ)

Qln(coshµ)

}
:= (−1)l(sinhµ)l

dl

dtl

{
Pn(t)

Qn(t)

∣∣∣∣∣
t=coshµ

because these definitions avoid imaginary values when l is odd. The general theory
and background on associated Legendre functions is contained in the monograph
by W.W. Bell [1] (cf. [13]).

The original impetus of the investigation of sets of orthogonal harmonic polyno-
mials over prolate and oblate spheroids has been developed by P. Garabedian [7].
The orthogonality was taken in several different norms, each of which lead to the
discussion of a partial differential equation by means of the kernel of the orthogo-
nal system corresponding to that norm. Spheroidal functions usually appear in the
solutions of Dirichlet problems in spheroidal domains arising in hydrodynamics,
elasticity and electromagnetism. For the solvability of boundary value problems
of radiation, scattering, and propagation of acoustic signals and electromagnetism
waves radiated by sources with spheroidal shapes, spheroidal functions are fre-
quently encountered. These applications have stimulated a surge of new ideas and
methods, both theoretical and applied, and have reawakened an interest in spectral
analysis, signal processing, optical system analysis, approximation theory, potential
theory, the theory of partial differential equations, and so forth.
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Recently, multidimensional extensions of prolate spheroidal harmonics to the
quaternionic analysis setting have been introduced in [21, 23], which have provided
many of their properties and have subsequently attracted special attention. In [24]
it has been shown that the underlying prolate spheroidal monogenics play an impor-
tant role in defining the monogenic Szegö kernel function for 3D (prolate) spheroids.
These results have been used to investigate a particular class of approximation prop-
erties for monogenic functions over (prolate) spheroids in terms of special systems
[26]. Extensions of the prolate spheroidal functions and their connections with the
finite quaternionic and Clifford Fourier transform setting were introduced in [27]
and [14]. These generalized spheroidal functions have been successfully applied
to analyse the energy concentration problem introduced in the early-sixties by D.
Slepian and H.O. Pollak [32]. In this line of research, in [29] the authors have ex-
ploited a complete orthogonal system of 3D oblate spheroidal monogenics by means
of harmonic functions and some recurrence formulae have been found. We honestly
expect that the rising popularity of the spheroidal functions is still on the rise and
will likely see even more growth in the future, due to their promising applications
in many fields.

Regarding the organization of the paper, in the next section we summarize some
definitions and basic properties of quaternionic analysis. Section 3 recalls a com-
plete orthogonal system of monogenic polynomials over 3D prolate spheroids. The
former were introduced in the papers [21, 23] which could be explicitly expressed in
terms of products of Ferrer’s associated Legendre functions multiplied by Chebyshev
polynomial factors (see expressions (3.1)-(3.3) below). In particular, the underly-
ing functions are of three real variables and take values in the reduced quaternions
(identified with R3), and are generally assumed to be null-solutions of the Riesz
system in R3. With the help of these polynomials, in Section 4 we construct a new
complete orthogonal system of monogenic functions as solutions to the Riesz system
for the space exterior of 3D (prolate) spheroids. This will be done in the spaces
of square integrable functions over R. Some important properties, and efficient
recurrence formulae for the basis functions are discussed. This helps to reduce the
amount of calculations in practice. The final section shows the concluding remarks
and discusses how the used methods can be extended within this context. Most
relevant to our study are the intimate connections between monogenic functions
and spheroidal structures [3, 10, 11, 19, 22, 25, 28], and the potential flexibility
afforded by a spheroid’s non-spherical canonical geometry. We will not consider
concrete applications of the (prolate) spheroidal monogenics in this paper.

The motivation for writing the present paper is to develop further general nu-
merical methods to solve both basic initial-boundary value and conformal mapping
problems. The topic here is the prolate functions, but the principles can be extended
to oblate spheroids as well (see Remark 3.1 below). Besides its obvious importance
this case will not be discussed in the present article. Further investigations will be
reported in a forthcoming paper.

2. Preliminaries

2.1. The Riesz system revisited. As is well-known, a holomorphic function
f(z) = u(x, y) + iv(x, y) of a complex variable z = x + iy (i =

√
−1) defined
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in an open domain of the complex plane, satisfies the Cauchy-Riemann system
∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x

.

As in the case of two variables, we may now characterize a possible analogue of
the Cauchy-Riemann system in an open domain of the Euclidean space R3. More
precisely, consider the pair f = (f0, f

∗) where f0 is a real-valued continuously
differentiable function defined on an open domain Ω ⊂ R3 and f∗ = (f1, f2, f3) is
a continuously differentiable vector-field in Ω for which

(R)

{
div f∗ = 0

rot f∗ = 0
.(2.1)

Recall that the 3-tuple f∗ is said to be an M. Riesz system of conjugate harmonic
functions in the sense of E.M. Stein and G. Weiß [33, 34], and system (R) is called
the Riesz system [31]. The Riesz system has a physical relevance as it describes the
velocity field of a stationary flow of a non-compressible fluid without sources nor
sinks.

2.2. Quaternionic analysis. The (R)-system can be obtained by using a quater-
nion framework. Throughout the paper, let

H := {z = z0 + z1i + z2j + z3k : zl ∈ R, l = 0, 1, 2, 3}

be the Hamiltonian skew field of quaternions, where the imaginary units i, j, and
k obey the laws of multiplication: i2 = j2 = k2 = −1; ij = k = −ji, jk = i = −kj,
and ki = j = −ik.

In the sequel, let A := spanR{1, i, j} ⊂ H be the space of reduced quaternion
elements of the form x := x0 + x1i + x2j, emphasizing that A is a real vectorial
subspace, but not a subalgebra, of H. The real vector space R3 is embedded in A
via the identification

x := (x0, x1, x2) ∈ R3 ↔ x := x0 + x1i + x2j ∈ A.

As a matter of fact, throughout the text we will often use the symbol x to represent
a point in R3 and x to represent the corresponding reduced quaternion. The scalar
and vector parts of x, Sc(x) and Vec(x), are defined as the x0 and x1i + x2j terms,
respectively. Like in the complex case, the conjugate of x is the reduced quaternion
x = x0−x1i−x2j, and the norm |x| of x is defined by |x|2 = xx = xx = x2

0+x2
1+x2

2.
Now, let Ω be an open subset of R3. We say that

f : Ω→ A, f(x) := Sc(f(x)) + [f(x)]1i + [f(x)]2j(2.2)

is a reduced quaternion-valued function or, briefly, an A-valued function, where
the components Sc(f) and [f ]m (m = 1, 2) are scalar-valued functions defined in
Ω. Continuity, differentiability, integrability, and so on, which are ascribed to f are
defined componentwise.

We will work with the real linear Hilbert space of all A-valued functions in Ω
that we denote by L2(Ω;A;R), for which

∫
Ω
|f(x)|2dV < ∞, where dV denotes
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the Lebesgue measure on Ω normalized so that V (Ω) = 1. In this assignment, the
scalar inner product is defined by

< f ,g >L2(Ω;A;R) =

∫
Ω

Sc(f g) dV .(2.3)

To simplify matters further we shall remark that using the embedding of R in A
the inner product of two scalar-valued functions f, g : Ω→ R can also be written by
using the scalar inner product (2.3), and it will be denoted simply by < f, g >L2(Ω).
The reader should note that the norm induced by the scalar inner product (2.3),

‖f‖2L2(Ω;A;R) :=< f , f >L2(Ω;A;R) =

∫
Ω

|f(x)|2dV

coincides with the L2-norm for f , considered as a vector-valued function.
For a real-differentiable A-valued function f that has continuous first partial

derivatives, the (reduced) quaternionic operators

∂ =
∂

∂x0
+ i

∂

∂x1
+ j

∂

∂x2
,(2.4)

and

∂ =
∂

∂x0
− i

∂

∂x1
− j

∂

∂x2
,(2.5)

are called, respectively, generalized and conjugate generalized Cauchy-Riemann op-
erators on R3. They correspond to the 3D extensions of the classical Cauchy-

Riemann operator ∂z = 1
2

(
∂
∂x + i ∂∂y

)
and its conjugate ∂z = 1

2

(
∂
∂x − i

∂
∂y

)
.

In prolate spheroidal coordinates, ∂ has the form

∂ =
1

sin2 θ + sinh2 µ

(
cos θ sinhµ

∂

∂µ
− sin θ coshµ

∂

∂θ

)
+

1

sin2 θ + sinh2 µ
(cosφi + sinφj)

(
sin θ coshµ

∂

∂µ
+ cos θ sinhµ

∂

∂θ

)
+

1

sin θ sinhµ
(− sinϕi + cosϕj)

∂

∂ϕ
.

We further assume the reader to be familiar with the fact that the operators (2.4)
and (2.5) factorize the Laplace operator in R3 in the sense that ∆3 = ∂∂ = ∂∂.
It is of interest to remark at this point that the operator ∂ in (prolate) spheroidal
coordinates reduces to the operator ∂ in spherical coordinates if coshµ ' sinhµ,
which occurs as µ appoaches infinity, and in which case the two foci coincide at the
origin.

A continuously real-differentiable A-valued function f is said to be two-sided
monogenic (or simply monogenic) in Ω if

∂f = 0 = f∂

in Ω, which is equivalent to the Riesz system

(R)


∂Sc(f)

∂x0
− ∂[f ]1

∂x1
− ∂[f ]2

∂x2
= 0 ,

∂Sc(f)

∂x1
+
∂[f ]1
∂x0

= 0,
∂Sc(f)

∂x2
+
∂[f ]2
∂x0

= 0,
∂[f ]1
∂x2

− ∂[f ]2
∂x1

= 0 .
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This system can also be written in abbreviated form:{
div f = 0

rot f = 0.

Following [17], the solutions of the system (R) are customary called (R)-solutions.
Denote byM(Ω,A) the space of all square integrableA–valued monogenic functions
in Ω. The following notation Ω− := R3\Ω is also used where Ω means the closure of
Ω. From now on, we always consider Ω as a domain bounded by a prolate spheroid,
particularly Ω := {(µ, θ, ϕ) | 0 ≤ µ < µ0, 0 ≤ θ < π, 0 ≤ ϕ < 2π} ⊂ R3.

3. 3D inner solid prolate spheroidal monogenics revisited

In this section we recall an explicit complete system of inner solid prolate spher-
oidal monogenics in 3D required for subsequent derivations. Unless stated other-
wise, all these facts can be found in [21, 23].

By virtue of [7] (cf. [13]), scalar-valued harmonic functions in prolate spheroidal
coordinates (1.1) are given by

Un,l(µ, θ) cos(lϕ), Un,l(µ, θ) sin(lϕ)

where Un,l(µ, θ) := P ln(coshµ)P ln(cos θ) (l = 0, . . . , n).
In all that follows, we denote by En,l (µ, θ, ϕ) := 1

2∂[Un+1,l(µ, θ) cos(lϕ)] and

Fn,l (µ, θ, ϕ) := 1
2∂[Un+1,l(µ, θ) sin(lϕ)]. Having in mind the mentioned Laplacian

factorization, it is easily seen that En,l and Fn,l are monogenic (more specifically,
they are a total of 2n + 3 (R)-non-homogeneous polynomial solutions with values
in A). These inner solid (prolate) spheroidal monogenics are of the form

En,l (µ, θ, ϕ) =
(n+ l + 1)

2
An,l(µ, θ) cos(lϕ)(3.1)

+
1

4 (n− l + 1)
An,l+1(µ, θ) [cos((l + 1)ϕ)i + sin((l + 1)ϕ)j]

+
1

4
(n+ 1 + l)(n+ l)(n− l + 2)An,l−1(µ, θ) [− cos((l − 1)ϕ)i

+ sin((l − 1)ϕ)j] ,

and

Fn,l (µ, θ, ϕ) =
(n+ l + 1)

2
An,l(µ, θ) sin(lϕ)(3.2)

+
1

4 (n− l + 1)
An,l+1(µ, θ) [sin((l + 1)ϕ)i− cos((l + 1)ϕ)j]

− 1

4
(n+ 1 + l)(n+ l)(n− l + 2)An,l−1(µ, θ) [sin((l − 1)ϕ)i

+ cos((l − 1)ϕ)j]

for l = 0, . . . , n+ 1 (n = 0, 1, . . . ), with the notation

An,l(µ, θ) :=

[n−l
2 ]∑

k=0

(2n+ 1− 4k) (n+ l − 2k + 1)2k

(n− l − 2k + 1)2k+1
Un−2k,l(µ, θ)(3.3)
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such that

An,−1(µ, θ) :=

{
− 1
n(n+1)2(n+2) An,1(µ, θ) n = 1, 2, . . .

0 n = 0.

As usual, for b ∈ R, (b)r = b(b + 1)(b + 2) · · · (b + r − 1) the Pochhammer symbol
with (b)0 := 1.

Because of properties of the Ferrer and sine functions, it is easy to see that
An,l(µ, θ) = 0 for l > n and Fn,0 = 0 for all n.

For the usual applications we define the previous polynomials in a spheroid which
has an unbounded boundary, because P ln−2k(coshµ) becomes infinite with µ.

In particular, in [21, 23] it is proved that the system

{En,l, Fn,l : l = 0, . . . , n+ 1; n = 0, 1, . . . }

forms a complete orthogonal system for the interior of the prolate spheroid (1.2) in
the sense of the scalar inner product (2.3). This system can be seen as a refinement
and extension of the harmonic polynomial systems exploited by P. Garabedian in
[7], and correspondingly it constitutes an extension of the role of the Chebyshev
polynomials and Ferrer’s associated Legendre functions. The principal point of
interest is that the orthogonality of the polynomials does not depend on the shape
of the spheroids, but only on the location of the foci of the ellipse generating
the spheroid. It is shown a corresponding orthogonality over the surface of these
spheroids with respect to a suitable weight function. Properties and applications
of these polynomials can be found in [21], [24] and [26].

Remark 3.1. A complete orthogonal system of 3D inner solid spheroidal monogenics
for an oblate spheroid have been exploited in [29]. Symbolically, inner solid oblate
spheroidal monogenics can be given in a similar way as (3.1)-(3.2) by making the
change of ”variables” Pmn−2k(coshµ) → in−2k−mPmn−2k(i sinhµ) in the subscript
coefficient function (3.3).

Remark 3.2. The corresponding results for the important limiting case, the sphere
(of radius coshµ ' sinhµ), can be obtained by a simple transformation.

4. Homogeneous monogenic functions on R3\{0}

Before going further, we take a look at a complete system of the monogenic
function space on R3\{0}. In [2], Bock used the Kelvin transformation directly
on the Appell system inside the unit ball to construct a complete system on the
exterior domain which consists of homogeneous functions. Since it requires full
quaternions, this idea is not applicable in the case of reduced quaternions. Thus
we shall apply again the harmonic function approach to obtain a complete system
of homogeneous monogenic functions on R3\{0}.

Definition 4.1. Given a function u defined on R3, then the function K[u] defined
on R3\{0} by

K[u](x) :=
1

|x|
u

(
x

|x|2

)
is called the the Kelvin transformation of u.
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The Kelvin transformation preserves harmonicity, thus we have a complete sys-
tem of harmonic functions on R3\{0}{

1

rn+1
Pn(cos θ),

1

rn+1
Pmn (cos θ) cos(mϕ),

1

rn+1
Pmn (cos θ) sin(mϕ)

}
with n = 0, 1, . . . ; m = 1, . . . , n. Applying the hypercomplex derivative 1

2∂ in
spherical coordinates as in [2], we obtain a complete orthogonal system of monogenic
functions defined on R3\{0}:

X0
−(n+2) = −n+ 1

2

Pn+1(cos θ)

rn+2

− 1

2

P 1
n+1(cos θ)

rn+2
[cosϕi + sinϕj]

Xm
−(n+2) = −n−m+ 1

2

Pmn+1(cos θ)

rn+2
cos(mϕ)

− 1

4

Pm+1
n+1 (cos θ)

rn+2
[cos((m+ 1)ϕ)i + sin((m+ 1)ϕ)j]

+
(n−m+ 1)(n−m+ 2)

4

Pm−1
n+1 (cos θ)

rn+2
[cos((m− 1)ϕ)i− sin((m− 1)ϕ)j]

Y m−(n+2) = −n−m+ 1

2

Pmn+1(cos θ)

rn+2
sin(mϕ)

− 1

4

Pm+1
n+1 (cos θ)

rn+2
[sin((m+ 1)ϕ)i− cos((m+ 1)ϕ)j]

+
(n−m+ 1)(n−m+ 2)

4

Pm−1
n+1 (cos θ)

rn+2
[sin((m− 1)ϕ)i + cos((m− 1)ϕ)j]

for n = 0, 1, . . . ; m = 1, . . . , n. These functions are homogeneous with degree of
homogenuity −(n+2). The point is that these functions form an orthogonal system
with the inner product (2.3) only if Ω is the exterior domain of a ball centering at
origin, but this is not the case. Therefore, we will construct a new one and then
compare it with the complete system of homogeneous functions in the next section.

5. 3D outer solid prolate spheroidal monogenics

5.1. A system of outer solid prolate spheroidal monogenics. This subsec-
tion introduces an orthogonal system of 3D prolate spheroidal monogenics as solu-
tions to the (R) system for the space exterior of a (prolate) spheroid.

We here borrow from the techniques used in the earlier works [9, 27], and extend
those results.

Definition 5.1. Let µ0 be the value of µ on a fixed prolate spheroidal surface. For
the space exterior to the prescribed prolate spheroid µ = µ0 we define

Ê−1,0 (µ, θ, ϕ) :=
− sinhµ cos θ + coshµ sin θ (cosϕi + sinϕj)

sinhµ (sin2 θ + sinh2 µ)
,(5.1)

Ê0,0 (µ, θ, ϕ) :=
1

4
ln

(
coshµ+ 1

coshµ− 1

)
− 1

2

coshµ

sin2 θ + sinh2 µ
(5.2)

+
1

2

sin θ cos θ

sinhµ (sin2 θ + sinh2 µ)
(cosϕi + sinϕj) ,
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Ên,l (µ, θ, ϕ) :=
(n+ l + 1)

2
Bn,l(µ, θ) cos(lϕ)(5.3)

+
1

4 (n− l + 1)
Bn,l+1(µ, θ) [cos((l + 1)ϕ)i + sin((l + 1)ϕ)j]

+
1

4
(n+ 1 + l)(n+ l)(n− l + 2)Bn,l−1(µ, θ) [− cos((l − 1)ϕ)i

+ sin((l − 1)φ)j] ,

F̂n,l (µ, θ, ϕ) :=
(n+ l + 1)

2
Bn,l(µ, θ) sin(lϕ)(5.4)

+
1

4 (n− l + 1)
Bn,l+1(µ, θ) [sin((l + 1)φ)i− cos((l + 1)ϕ)j]

− 1

4
(n+ 1 + l)(n+ l)(n− l + 2)Bn,l−1(µ, θ) [sin((l − 1)ϕ)i

+ cos((l − 1)ϕ)j] ,

(for l = 0, . . . , n ; n = 1, 2, . . . ;)

Ên,n+1 (µ, θ, ϕ) := (n+ 1)Bn,n+1(µ, θ) cos((n+ 1)ϕ)(5.5)

−
coshµPn+2

n+2 (cos θ)Qn+2
n+1(coshµ)

4(2n+ 3)(sin2 θ + sinh2 µ)
[cos((n+ 2)φ)i + sin((n+ 2)ϕ)j]

+
(2n+ 2)(2n+ 1)

4
Bn,n(µ, θ) [− cos(nϕ)i + sin(nφ)j] ,

F̂n,n+1 (µ, θ, ϕ) := (n+ 1)Bn,n+1(µ, θ) sin((n+ 1)ϕ)(5.6)

−
coshµPn+2

n+2 (cos θ)Qn+2
n+1(coshµ)

4(2n+ 3)(sin2 θ + sinh2 µ)
[sin((n+ 2)φ)i− cos((n+ 2)ϕ)j]

− (2n+ 2)(2n+ 1)

4
Bn,n(µ, θ) [sin(nϕ)i + cos(nφ)j] ,

(for n = 0, 1, . . . )
The subscript coefficient function

Bn,l(µ, θ) :=
1

sin2 θ + sinh2 µ

[
coshµP ln(cos θ)Qln+1(coshµ)(5.7)

− cos θ P ln+1(cos θ)Qln(coshµ)
]
.

where

Bn,−1(µ, θ) := − 1

n(n+ 1)2(n+ 2)
Bn,1(µ, θ) for n = 1, 2, . . .

We underline that the functions (5.1)–(5.6) is obtained by applying the hyper-
complex derivative

(
1
2∂
)

to harmonic functions Vn+1,l cos(lϕ) and Vn+1,l sin(lϕ),

where Vn+1,l = Qln+1(coshµ)P ln+1(cos θ), then they are monogenic functions. More-

over these are not well-defined at the origin since Qln(coshµ) becomes logarithmi-
cally infinite when µ = 0. The asymptotic behavior of these functions when µ tends
to infinity will be discussed later.
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It is easily seen that F̂n,0 = 0 for all n as 3D inner spheroidal monogenics.

Differently, Ên,n+1 and F̂n,n+1 still have scalar part since Bn,n+1(µ, θ) 6= 0. Indeed,
we have

Bn,n+1 = −
cos θPn+1

n+1 (cos θ)Qn+1
n (coshµ)

sin2 θ + sinh2 µ
.

It is noted that Bln = 0 for l ≥ n+ 2. In other cases, Bn,l(µ, θ) can be explicitly
described using a similar recurrence formula as in [21]

Bn,l(µ, θ) =
2n+ 1

n− l + 1
P ln(cos θ)Qln(coshµ) +

(n+ l)(n+ l − 1)

(n− l + 1)(n− l)
Bn−2,l(µ, θ),

with initial values (cf. [37])

Bl,l(µ, θ) = (2l + 1)P ll (cos θ)Qll(coshµ)− 2l
coshµP ll (cos θ)Qll−1(coshµ)

sin2 θ + sinh2 µ
,

Bl+1,l(µ, θ) =
2l + 3

2
P ll+1(cos θ)Qll+1(coshµ)− l(2l + 1)

cos θP ll (cos θ)Qll−1(coshµ)

sin2 θ + sinh2 µ

for l > 0 and for l = 0

B0,0(µ, θ) = P0(cos θ)Q0(coshµ)− coshµ

sin2 θ + sinh2 µ
,

B1,0(µ, θ) =
3

2
P1(cos θ)Q1(coshµ)− 1

2

cos θ

sin2 θ + sinh2 µ
.

Solving the inductive formula for Bn,l leads to

Bn,l(µ, θ) =

[n−l
2 ]−1∑
k=0

(2n+ 1− 4k) (n+ l − 2k + 1)2k

(n− l − 2k + 1)2k+1
P ln−2k(cos θ)Qln−2k(coshµ)

+


(2l + 1)n−l
(n− l + 1)!

Bl,l(µ, θ) if n− l even

2(2l + 2)n−l−1

(n− l + 1)!
Bl+1,l(µ, θ) if n− l odd.

(5.8)

These functions Bn,l(µ, θ) play an important role in discovering properties of our
monogenic function system. Step by step, we will discuss more about their charac-
teristics.

5.2. Asymptotic behavior. Our aim is constructing an orthogonal complete sys-
tem of the L2-monogenic function space in the exterior domain of a prolate spheroid.
Therefore at least these functions must tend to zero at infinity. Theoretically, a
basis of monogenic functions can be constructed by using Kelvin transformation as
presented in [2]. The obtained functions are homogeneous of degree −k (in Cartesian
coordinates) with k ≥ 2, which defines their asymptotic behaviors. Unfortunately,
such a basis is only orthogonal in spherical cases. In the next section, we will prove
the orthogonality. Now, it would be nice to know how our functions behave at
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infinity. In order to find the answer, we look back to Legendre functions of the
second kind. For |z| > 1

Qln(z) = (−1)leiπl
√
πΓ(n+ l + 1)

2n+1Γ(n+ 3
2 )

(z2 − 1)
l
2

zn+l+1
F

(
2 + n+ l

2
,

1 + n+ l

2
,

2n+ 3

2
;

1

z2

)
where Γ(t) and F (α, β, γ; t) are the gamma and hypergeometric functions, respec-
tively (see also [30]). When z tends to infinity

Qln(z) ' (n+ l)!

(2n+ 1)!!

1

zn+1
.

Now let z = coshµ ' sinhµ ' r when µ is large enough (with r =
√
x2

0 + x2
1 + x2

2),
it leads to

Bn,l(µ, θ) ' 1

r2

[
rP ln(cos θ)

(n+ l + 1)!

(2n+ 3)!!

1

rn+2
− cos θP ln+1(cos θ)

(n+ l)!

(2n+ 1)!!

1

rn+1

]
= − (n− l + 2)(n+ l)!

(2n+ 3)!!

P ln+2(cos θ)

rn+3
.

As a result, we obtain the asymptotic behaviors of Ên,l and F̂n,l for l = 0, . . . , n+
1; n = 0, 1, . . .

Ên,l '
(n+ l + 1)!

(2n+ 3)!!
X l
−(n+3),

F̂n,l '
(n+ l + 1)!

(2n+ 3)!!
Y l−(n+3).

One can see that at infinity Ên,l and F̂n,l behave like homogeneous monogenic

functions of degree −(n+ 3). A special case corresponding to Ê−1,0 when µ→∞

Ê−1,0 ' −
1

r2
[cos θ − sin θ (cosϕi + sinϕj)] = − x

|x|3
.

It means that Ê−1,0 has the asymptotic property similar to the Cauchy kernel in
a neighborhood of infinity. This is very important not only to ensure that those
functions are well defined on the exterior domain of a prolate spheroid, but also it
gives us an evidence of the completeness of such a system.

5.3. Orthogonality. In order to make a concise proof about the orthogonality of
the system, we formulate at first some supplementary results.

Proposition 5.2. Let Ên,m, F̂k,l be functions as described in (5.1)–(5.6). Each
following pair of functions are orthogonal with respect to the inner product (2.3)
whenever l1 6= l2:

• {Ên1,l1 , Ên2,l2}
• {F̂n1,l1 , F̂n2,l2}
• {Ên1,l1 , F̂n2,l2}

We skip the proof here. In fact, the 3D outer monogenic functions (5.1)–(5.6)
share the same structure with the 3D inner monogenic functions (3.1)-(3.2) which
have been studied in several articles by J. Morais, among other mathematicians.
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Therefore, the orthogonality in cases of different orders l1 6= l2 can be done similarly.
We refer readers to [21, 23, 29] for a detail proof.

The difference between the 3D inner and outer monogenics comes from the sup-
plementary functions An,l(µ, θ) in (3.3) and Bn,l(µ, θ) in (5.7). As we can see,
An,l(µ, θ) is decomposed into summands of the form

P ln−2k(coshµ)P ln−2k(cos θ).

Consequently, the remaining proof for cases of different degrees n1 6= n2 is done
due to the orthogonality of associated Legendre polynomials of the first kind∫ π

0

P ln(cos θ)P ls(cos θ) sin θ dθ = 0,∫ π

0

P ln+1(cos θ) cos θ P ls(cos θ) sin θ dθ = 0

where s < n. However, Bn,l(µ, θ) includes not only summands

Qln−2k(coshµ)P ln−2k(cos θ)

but also one extra–term

coshµP ll (cos θ)Qll−1(coshµ)

sin2 θ + sinh2 µ
or

cos θP ll (cos θ)Qll−1(coshµ)

sin2 θ + sinh2 µ
.

For this reason, it is necessary to improve our techniques to overcome such a differ-
ence. We express an orthogonal property for the ansatz function Bn,l(µ, θ) by the
underline proposition:

Proposition 5.3. Let Bn,l(µ, θ) be functions as in the Definition 5.1, then with
l = 0, 1, . . . the following equalities hold for each pair of (n, k) : k, n ∈ {l, l + 1}∫ π

0

Bn,l(µ, θ)P
l
k(cos θ) sin θ dθ = 0.

Proof. In fact, there are 4 equalities corresponding to 4 choices of (n, k). We put a
parameter χ taking values in the set {(0, 0), (0, 1), (1, 0), (1, 1)} to express choices
of (n, k). For example, χ = (1, 0) corresponds to n = l + 1 and k = l. We denote
left hand sides of the equalities by Ilχ. Note that we always have

Il(0,1) = Il(1,0) = 0.

Indeed, let us consider for example

Il(1,0) =

∫ π

0

Bl+1,l(µ, θ)P
l
l (cos θ) sin θ dθ

=

∫ π

0

{
2l + 3

2
P ll+1(cos θ)Qll+1(coshµ)− l

P ll+1(cos θ)Qll−1(coshµ)

sin2 θ + sinh2 µ

}
× P ll (cos θ) sin θ dθ.

The first term has zero–integral because of the orthogonality of associated Legendre
polynomials. The second term has also vanishing integral because this is an odd
function with respect to variable t := cos θ.

Now we consider the two remaining integrals Il(0,0) and Il(1,1). Basically, there is

no difference between them. Thus now we prove for Il(0,0). The other can be derived

analogously.
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First of all, let us calculate Il(0,0) for some initial values l = 0, 1

I0
(0,0) =

∫ π

0

B0,0(µ, θ)P0(cos θ) sin θ dθ

=

∫ π

0

{
Q0(coshµ)− coshµ

sin2 θ + sinh2 µ

}
sin θ dθ

= 2Q0(coshµ) − ln

(
coshµ+ 1

coshµ− 1

)
= 0,

I1
(0,0) =

∫ π

0

B1,1(µ, θ)P 1
1 (cos θ) sin θ dθ

=

∫ π

0

{
3P 1

1 (cos θ)Q1
1(coshµ)− 2

coshµP 1
1 (cos θ)Q1

0(coshµ)

sin2 θ + sinh2 µ

}
P 1

1 (cos θ) sin θ dθ

= 4Q1
1(coshµ)− 2 coshµQ1

0(coshµ)

∫ π

0

sin2 θ

sin2 θ + sinh2 µ
sin θ dθ

= 0.

For arbitrary l > 1, one has

Il(0,0) =

∫ π

0

Bl,l(µ, θ)P
l
l (cos θ) sin θ dθ

=

∫ π

0

{
(2l + 1)P ll (cos θ)Qll(coshµ)− 2l

coshµP ll (cos θ)Qll−1(coshµ)

sin2 θ + sinh2 µ

}
× P ll (cos θ) sin θ dθ

= 2(2l)!Qll(coshµ)− 2l coshµQll−1(coshµ)

∫ π

0

[P ll (cos θ)]2

sin2 θ + sinh2 µ
sin θ dθ.

Now we rewrite the integral part in the above formula∫ π

0

[P ll (cos θ)]2

sin2 θ + sinh2 µ
sin θ dθ = (2l − 1)2

∫ π

0

sin2 θ[P l−1
l−1 (cos θ)]2

sin2 θ + sinh2 µ
sin θ dθ

= 2(2l − 1)!− (2l − 1)2 sinh2 µ

∫ π

0

[P l−1
l−1 (cos θ)]2

sin2 θ + sinh2 µ
sin θ dθ.

Moreover from properties of associated Legendre functions of the second kind
(see [37]), one gets

sinhµQll−1(coshµ) = 2(l − 1)Ql−1
l−2(coshµ).

Subtitute all these stuffs into the calculation of Il(0,0), we find that

Il(0,0) = −2l(2l − 1)2 sinhµ Il−1
(0,0)

+ 2(2l)! [Qll(coshµ)− coshµQll−1(coshµ) + (2l − 1) sinhµQl−1
l−1(coshµ)]︸ ︷︷ ︸

= 0

= −2l(2l − 1)2 sinhµIl−1
(0,0)

This is an inductive formula and associated with initial values I0
(0,0) = I1

(0,0) = 0,

it yields that Il(0,0) = 0 for every l = 0, 1, . . . It completes the proof. �
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To end this section, we conclude by a theorem of the orthogonality of the function
system (5.1)–(5.6)

Theorem 5.4. The constructed functions (5.1)–(5.6) form an orthogonal system
with respect to the inner product (2.3).

Proof. As we discussed in the proposition 5.2, two functions in (5.1)–(5.6) are or-
thogonal if they have different orders l1 6= l2. It is now to prove the orthogonality
in cases of the same order l. Look back to the form of functions (5.1)–(5.6), we see

that Ên,l and F̂k,l are always orthogonal because of the orthogonality of following
pairs

{sin(lϕ), cos(lϕ)}, {sin[(l + 1)ϕ], cos[(l − 1)ϕ]}, {sin[(l − 1)ϕ], cos[(l + 1)ϕ]}

when ϕ runs from 0 to 2π. It is enough to prove such a property inside each subset

of {Ên,l} and {F̂k,l} functions. Remark that in the special cases of Ê−1,0, Ên,n+1

and F̂n,n+1 the following arguments still hold. Thus we just prove for the general

form of Ên,l and F̂k,l. Now, if we calculate the inner product of these functions
and cancel vanishing–terms, the remains are integrals of the forms∫ π

0

Bn1,m(µ, θ)Bn2,m(µ, θ) sin θ(sin2 θ + sinh2 µ)dθ

where m = l − 1, l, l + 1. Suppose that n1 > n2. Present Bn1,m(µ, θ) as (5.7) and
Bn2,m(µ, θ) as (5.8) and omit vanishing–integrals, what left are∫ π

0

Bn1,m(µ, θ)P ll (cos θ) sin θdθ

if n2 −m even, or ∫ π

0

Bn1,m(µ, θ)P ll+1(cos θ) sin θdθ

if n2−m odd. Using again (5.8) for Bn1,m(µ, θ), it leads to integrals of the form as
stated in the proposition 5.3 and so remaining integrals vanish. Hence the theorem
follows. �

5.4. Completeness. Now we claim the main theorem of this paper.

Theorem 5.5. The functions (5.1)–(5.6) form an orthogonal complete system in
the space M(Ω−,A).

Proof. We have already proved the orthogonality. To prove the completeness,
we only need to prove that every function in {X0

−(n+2), X
m
−(n+2), Y

m
−(n+2) : n =

0, 1, . . . ; m = 1, . . . , n} can be expressed by our function system. Indeed, let us
consider Xm

−(n+2) as an example. We have

Xm
−(n+2) =

1

2
∂

[
1

rn+1
Pmn (cos θ) cos(mϕ)

]
.
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The term inside the square brackets [·] is a harmonic function defined on Ω−.
Thus it can be expressed in terms of outer solid spheroidal harmonic functions

∞∑
n=0

(
a0
nQn(coshµ)Pn(cos θ) +

n∑
m=1

Qmn (coshµ)Pmn (cos θ)

× [amn cos(mϕ) + bmn sin(mϕ)]
)
.

This series expansion converges in L2(Ω−). Differentiate summand by summand,
one finally gets

Xm
−(n+2) = a0

0Ê−1,0 + b11F̂0,1 +

∞∑
n=0

n+1∑
m=0

amn+1Ên,m +

∞∑
n=1

n+1∑
m=1

bmn+1F̂n,m.

Apply the same arguments to other homogeneous monogenic functions, the theorem
then follows. �

5.5. General properties. We begin this subsection by summarizing some basic
properties of the basis functions.

Theorem 5.6. Let µ0 be the value of µ on a fixed prolate spheroidal surface. The
outer solid prolate spheroidal monogenics (5.1)–(5.6) satisfy the following proper-
ties:

(1) Ên,l and F̂n,m are the zero functions for l,m ≥ n+ 2;

(2) Ên,l and F̂n,m are 2π-periodic with respect to the variable φ;

(3) For each n ∈ N, the inhomogeneous harmonic functions Sc(Ên,l) (l =

0, . . . , n) and Sc(F̂n,m) (m = 1, . . . , n) form an orthogonal system over
the space exterior to µ0 in the sense of the product (2.3);

(4) For each n ∈ N, each of the two sets{
Sc(Ên,l), [Ên,l]1, [Ên,l]2 : l = 0, . . . , n+ 1

}
,

and {
Sc(F̂n,m), [F̂n,m]1, [F̂n,m]2 : m = 1, . . . , n+ 1

}
forms an orthogonal system over the space exterior to µ0 in the sense of
the scalar product (2.3).

Proof. Statements 1. and 2. follow from the properties of the Ferrer’s functions
and Chebyshev polynomials. The proofs of Statements 3. and 4. are a consequence

of Theorem 5.4, and having in mind that Sc(Ên,n+1) = Sc(F̂n,n+1) = 0. �

In view of the practical applicability of the aforementioned spheroidal monogen-
ics, next we illustrate explicit recurrence rules between them that are plain to be
integrated in a computational framework.
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Proposition 5.7. For each n ∈ N, the outer solid prolate spheroidal monogenics
(5.1)-(5.6) satisfy the recurrence formulae:

Ên,l = − (n+ l + 1)(n− l + 2)

2

(
Ên,l−1i− F̂n,l−1j

)
+

(1 + δ0,l)

2 (n+ l + 2)(n− l + 1)

(
Ên,l+1i + F̂n,l+1j

)
;

and

F̂n,m = − (n+m+ 1)(n−m+ 2)

2

(
F̂n,m−1i + Ên,m−1j

)
+

1

2 (n+m+ 2)(n−m+ 1)

(
F̂n,m+1i− Ên,m+1j

)
for l = 0, . . . , n + 1 and m = 1, . . . , n + 1, with starting value (5.2). For a more

unified formulation we remind the reader that Ên,m = F̂n,m ≡ 0 for m ≥ n + 2,
and δl,0 is the Kronecker symbol.

Proof. For simplicity we just present the calculations for Ên,m (m > 1). By direct
inspection of previous expressions one has

− (n+m+ 1)(n−m+ 2)

2

(
Ên,m−1i− F̂n,m−1j

)
+

1

2 (n+m+ 2)(n−m+ 1)

(
Ên,m+1i + F̂n,m+1j

)
=

(n+m+ 1)

2
Bn,m(µ, θ) cos(mφ)

+
1

4 (n−m+ 1)
Bn,m+1(µ, θ) cos((m+ 1)φ)i

− 1

4
(n+ 1 +m)(n+m)(n−m+ 2)Bn,m−1(µ, θ) cos((m− 1)φ)i

+
1

4
(n+ 1 +m)(n+m)(n−m+ 2)Bn,m−1(µ, θ) sin((m− 1)φ)j

+
1

4 (n−m+ 1)
Bn,m+1(µ, θ) sin((m+ 1)φ)j

= Ên,m, m = 1, . . . , n+ 1.

The proofs for Ên,0 and F̂n,m (m > 1) follow the same principle and are therefore
straightforward. �

As a direct consequence, we obtain the following recurrence relation.

Corollary 5.8. For each n ∈ N, the outer solid prolate spheroidal monogenics
satisfy the two-term type recurrence formula:

(n+ 2)(n+ 1) Ên,0 − Ên,1i− F̂n,1j = 0,

(n+m+ 1)(n−m+ 2)
(
Ên,m−1 − F̂n,m−1k

)
− Ên,mi− F̂n,mj = 0

for m = 1, . . . , n+ 1, with the starting value (5.2).
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6. Perspectives and concluding remarks

In the presented study we constructed an explicit complete orthogonal system
of (R)-solutions for the space exterior of a 3D prolate spheroid. The system is
composed by piecewise monogenic functions, and is capable of describing exactly the
general information expressed by the commonly used Ferrer’s associated Legendre
functions of the first and second kinds, which seems to be suitable for the treatment
of monogenic functions by the use of power series expansions. Recurrence formulae
for fast computer implementations were also given. We honestly expect that the
rising popularity of these generalized spheroidal functions is still on the rise and
will likely see even more growth in the future, due to their promising applications
in many fields.

Recent studies have shown that our approach is connected, in a systematic fash-
ion, with the problem of scattering for both Dirichlet and Neumann boundary
conditions in the case in which the boundary is the prolate spheroid µ0. We are
convinced that such problems can be handled with Fourier techniques by expansion
into the above spheroidal monogenics. With the help of the constructed system,
we also hope to contribute to questions related to an (orthogonal) type Laurent
series expansion and its interplay with the classical Cauchy’s integral formula, and
a number of underlying applications. Further investigations on this topic are now
under investigation and will be reported in a forthcoming paper.
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